Goodness of Fit and Related Inference Processes for Quantile Regression

Roger Koenker; Jose A. F. Machado

Journal of the American Statistical Association, Vol. 94, No. 448. (Dec., 1999), pp.
1296-1310).

Stable URL:
http://links.jstor.org/sici ?sici=0162-1459%28199912%2994%3 A448%3C1296%3IAGOFARI%3E2 0.CO%3B2-2

Journal of the American Statistical Association 1s currently published by American Statistical Association.

Your use of the ISTOR archive indicates your acceptance of ISTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. ISTOR's Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the ISTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www _jstor.org/journals/astata.html.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transtnission.

ISTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding ISTOR, please contact support@jstor.org.

http://www jstor.org/
Wed Apr 5 16:13:03 2006



Goodness of Fit and Related Inference Processes for

Roger KOENKER and José A. F. MACHADO

Quantile Regression

We introduce a goodness-of-fit process for quantile regression analogous ta the conventional R2 statistic of least squares regression.
Several related inference processes designed to test composite hypotheses about the combined effect of several covariates over
an entire range of conditional quantile fupctions are alse formulated. The asymptotic behavior of the inference processes is
shown ta be closely related to carlier p-sample goodness-of-fit theory involving Bessel processes. The approach 1s illustrated with
some hypothetical examnples, an application to recent empirical models of international economic growth, and some Monte Carlo

evidence.

KEY WORDS: Bessel pracess; Goodness of fit; Quantile regression; Rank test; Regression rankscores.

1. INTRODUCTION

(Quantile regression is gradually emerging as a compre-
hensive approach to the statistical analysis of linear and
nonlinear response maodels. By supplementing the exclusive
focus of least squares based methods on the estimation of
conditional mean functions with a general technique for es-
timating families of conditional quantile functions, quantile
regression is capable of greatly expanding the flexibility of
hoth parametric and nonparametric regression methads. To
this end, effective assessment of goedness of fit for quan-
tile regression models and the development of associated
methods of formal inference is critical. In this article we
introduce a goodness-of-fit process for quantile regression
‘analogous to the conventional R? of least squares regres-
sion. Several closely related processes are then suggested
that provide a foundation for a broad range of new tesis
and diagnostics, considerably expanding the scope of sta-
tistical inference bhased on quantile regression.

1.1  Quantile Treatment Effects

The simplest formulation of quantile regression is the
two-sample treatment-control model, so we begin by recon-
sidering a model of two-sample treatment response intro-
duced by Lehmann and Doksum that provides a natural in-
troduction to quantile regression. In special circumstances,
we may be willing to entertain the hypothesis that a treat-
ment effect 1s a pure location shift; subjects with conirol
respaonse © would have response = 4+ Ag under the treat-
ment. This is the presumption that underlies most of con-
ventional regression analysis. Lehmann (1974} proposed the
following general model of treatment response:

Suppose the treatment adds the amount A(z) when the re-
sponse of the untreated subject would be 2. Then the distri-
hution G of the treatment responses is that of the random

variable X 4+ A{X) where X is distributed according to F
(p- 68}
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Special cases obvicusly include the locatien shift model
A(X)} = Ay and the scale shift model A(X) = ¢X but
the general case is well adapted to the quantile regression
paradigm. Doksum (1974) pravided a thorough analysis of
Az} showing that if we define A(z) as the “horizontal
distance” between F and & at z, so that

F(z) = Gz + Al2)),
then A{z) is uniquely defined and can be expressed as
Alx) =G Y F(x)) — = (1)

Thus, on changing variables so that 7 = F(x}, we have the
quantile treatment effect,

alr) = A(F—l('r]} = G'_l('r) - F'_I(T),

In the two-sample setting this quantity is naturally estimable
by

8(r) = G (r) — B (r),

where GG, and F,,, denote the empirical distribution fune-
tions of the treatment and contrel abservations, based on n
and m observations. If we formulate the quantile regression
mode] for the hinary treatment problem as

Qv (7IDi) = afr) +3(7)D;, )

where D, denotes the treatment indicator, then we may es-
timate the quantile treatment effect directly by solving the
quantile regression prablem

min

Tl
(ad)eR? 2 Py —a — 5Dz')a
@,

=1

where p,.(u) = ul(r — I{u < 0)) following Koenker and
Rassett {1978).

Doksum suggested that we may interpret the treatment
effect in terms of a latent characteristic. For example, in sur-
vival analysis a control subject may be called weak if he is
prone to die at an early age, and strong if he is prone to die

at an advanced age. Strength is thus implicitly indexed by
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7, the quantile of the survival distribution at which the sub-
ject would appear if untreated; that is, (Y;|D; = 0} = a(7).
The treatment, under the Lehmann—Doksum maodel, is as-
sumed to alter the subject’s control response, ofr), making
1t a{7) + 8(7) under the treatment. If the treatment is ben-
eficial in the sense that

Alz) >0 Va,

then the distribution of treatment responses, (3, is stochas-
tically larger than the distribution of control responses, F.

1.2  Quantile Regression Goodness of Fit

Our goodness-of-fit proposal for quantile regression is
motivated by the familiar R? of classical least squares
regression. Consider the linear model for the conditional
mean function of g, given x,,

E(yi|xi) = Xiﬁ? (3)
which we partition as
Elyx;) = 35,81 + x50, (4}

Let ,fi de;}ote the least squares estimators of the full model
and let A = (B],0') denote the estimator under the g-
dimensional linear restriction that

Hy: B2 =0. (5)

Denoting the error sum of squares under the restricted and
unrestricted forms of the model by § and 3, we may define
an R? of model (4) relative to the restricted model con-
strained by the hypothesis (5) as

R —1-§/3. (©)

Conventionally, restricting (4) to include only an “intercept”
parameter yields the R? usually reported.

For quantile regression, we may proceed in the same
manner. Consider a linear model for the conditional quan-
tile function,

Quu (71%) = X1 Bu(7) + XaBa(7),

and let 3(r) denote the minimizer of

1:" = i TAHL T ;b
(1) = min, > prly: —xb)
and ,@(7) = (B (), 0') denote the minimizer for the cor-

responding constrained problem, with

min Y pe(ys — X3;b1).

f}(f) =
(h €RF-2}

That is, B(r) and B(r} denote the unrestricted and re-
stricted quantile regression estimates. We may now define
the goodness-of-fit criterion

RY(r)=1-V(r)/V(r), 7

which is the natural analog of R? defined earlier.
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Like R?, because B(r) is obtained by constraining 3(r),
it is immediately apparent that V(7) < V{(r), and thus
R(7} lies between 0 and 1. Unlike R2, which measures
the relative success of two models for the conditional mean
function in terms of residual variance, R'{7) measures the
relative success of the corresponding quantile regression
models at a specific quantile in terms of an appropriately
weighted sum of absolute residuals. Thus R} (7) constitutes
a local measure of goodness of fit for a particular quantile
rather than a global measure of goodness of fit over the
entire conditional distribution, like RZ.

One can easily imagine circumstances under which the
covariates x» might exert a significant effect on one tail
of the conditional distribution of the response but might
have no effect in the other tail. One example of this is the
quantile regression results of Chamberlain (1994) on the
U.S. labor union wage premium. Chamberlain found that
the 16% mean wage premium for union membership es-
timated by least squares, when deconstructed by quantile
regression, was seen (e constitute a much larger—nearly
30%—premium in the lower tail of the conditional wage
distribution, but gradually attenuated to the point that it
was essentially negligible above the median.

Use of the optimized value of the objective function
defining a regression estimator as in (7) as a measure of
goodness of fit is sufficiently natural that it is quite com-
monplace in the robustness literature. Abberger (1996),
Horowitz {1992), and Rousseeuw and Hubert (1997) have
suggested this idea for least median of squares and !, fore-
casting. McKean and Sievers (1987) suggested R*(1/2) for
the i, regression estimator and provided a very complete
analysis of its properties, including the connection to a
quasi-likelihood ratio test.

If the full model (4) is better at the T-quantile than the
restricted model constrained by (3), then f/n('r) should be
significantly smaller than V(7). Here “better” should be
understood te mean that the rth conditional quantile fune-
tion is significantly altered by the influence of the covariates
x5. To assess the goodness of fit of the two nested models
for the entire distribution, it is natural to compare the pro-
cesses V() and V(7). The R'(7) process (7) is one pos-
sible gauge of the differences between the V(r) and V(7)
processes for the entire distribution. But such a comparison
also provides the basis for formal tests of the hypothesis
Ha. We consider several such variants later. The choice of
these statistics is motivated by analogies to likelihood ratio
(LR) tests in the Laplacean regression madel, as well as by
the theory of rank tests for linear quantile regression mod-
els. These connections are explored in detail in Section 2,
where the asymptotic theory of the tests is also developed.
In an effort to develop some intuition abeut the processes
as diagnostic tools in regression, we explore in Section 3
the behavior of the RI(r) process, and the related infer-
ence processes, using a range of artificial data. In Section
4 we illustrate the use of the methods with an analysis of
a well-known mode] of international economic growth. In
Section § we report on a small Monte Carlo study of the
finite-sample properties of the proposed tests and in Section
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6 offer some conclusions and describe some prospects for
new research. We provide proofs in the Appendix.

2. INFERENCE PROCESSES FOR
QUANTILE REGRESSION

The RY(r) process provides a natural link to two closely
related versions of a LR process for quantile regression.
2.1 Two Likelihood Ratios

Consider the asymmetric Laplacean density

fi{u) =71 — 7)exp{—p,(u})}.

The log-likelihood under the assumption that the {u;} come
from this (rather implausible) density is

Uy = nlog(r =Y prly — %),

and thug the LR statistic for testing Hq would be

~2log An(7) = 2(U(A(r)) — UA(r))) = AV (7) = V(7).

Under these conditions, and Hy, conventional LR theory
implies that —2log A, (7) will be asymptotically x2. More
generally, we can ask how this statistic behaves when the
{n;} are iid but drawn from some other distribution, say
F. Adapting the arguments of Koenker and Bassett (1982)
slightly, it can be shown that under Hy,

2AV(r) - Vi)
7(1 — 7)3(7) @)

is asymptotically 73, where s(7} = 1/f(F~'(r)}. The lat-
ter quantity, variously termed the sparsity function ov the
quantile-density function, plays the role of a nuisance pa-
rameter, whose estimation we discuss in Section 2.5.

Similarly, we may consider a location and scale form of
the asymmetric Laplacean density,

folu) = 7(1 - 7)exp{—p.(u)/o}/0,
that vields the LR statistic

(L—7))

Lty =

—2log A (7) = 2nlog(V(r)/V (7).

The asymptotic behavior of this version of the LR statistic
follows easily from the preceding result by writing

~2log M (7Y = 2nlog(l + (V(r) — V(r))/V (7))
—V(7)/V(r) + 0p(1)
V(r)/a(r) + 0(1),

where we assume that o(7) = Ep,(u) < oo, so 4(7) =
n~ V(7)) — o(r). Thus, under Hy, by (8),

1

= 2n(V(7)

= 2V (r) —

no (1)
(1 —7)s(7)

is asymptotically x3.

Tests of this sort based on the drop in the optimized value
of the objective function of an A estimator after relaxation
of the restriction imposed by the null hypothesis have been

An(r} = log(V(7)/V (7))

Jaurnal of the American Statistical Association, December 1999

termed p tests by Ronchetti {1982). Following this termi-
nology, we refer to these LR-type tests based on L,,(7) and
A (7] as quantile p tests.

2.2 Likelihood Ratio Processes for Quantile Regressian

In many applications it may be important to formu-
late joint hypotheses about the relevance of certain groups
of covariates with respect to several quantiles. For this
we require the joint asymptotic distribution of vectors
of quantile p test statistics of the form, for example,
(Ln(m), Ln(7a),. .., Ln(7Tm)). Such results are subhsumed
in the following theory for the p test processes, {L(r)

(£,1 — €]}, and {A(7): 7 € [e,1 — g]}.
In this section we restrict attention to the linear model

Y = X181 + ®0: + uy (9)

where the {u;}'s are assumed to be iid with common dis-
tribution function, F., satisfying the following assumption:

A.l. The error distribution F has continuous Lebesgue
density, f, with f(u)} > 0 on {u: 0 < F(u) < 1}.

The sequence of design matrices {X,} = {{x;)}-,} is
assumed to satisfy the following assumption:

A2

{a
(b

i =1,4=1,2,...
=n"1X! X, — D, a positive definite matrix.

”‘ZHX@H“ =0(1)

maxi—1,. n ||X|| = O(r}*/logn)

-_«~_'-_a

(cl

—

We consider tests of the hypothesis
H@Z ,62(7') =0

for some index set 7 C (0,1) against a sequence of local
alternatives formulated as the following:

TeT (1%

A.3. ‘There exists a fixed, continucus function, {(7):
(0,1] — R? such that 82(7) = {(r)//n for samples of
size n.

Remarks., Conditions A.l and A.2 are standard in the
quantile regression literature. Somewhat weaker conditions
on both F and X,, were used by Gutenbrunner, Jureékovd,
Koenker, and Portnoy (1993; denoted by GIKP hereafier) in
an effort to extend the theory into the tails, but this doesn’t
seem critical here s¢ we have reverted to conditions close
to those used by Gutenbrunner and Jure¢kovd (1992; de-
noted by GJ hereafter). Condition A.3 is a direct analog of
condition A.3 of Koenker and Bassett (1982) and permits
us to explore the local asymptotic power of the proposed
tests. Note that (A.3) explicitly expands the scope of the
iid error model because it permits the x4 effect to depend
on 7.

To investigate the asymptotic behavior of the processes
Lot} and A, (1), we require some rather basic theory and
notation regarding Bessel processes. Let W, (t) denote a ¢-
vector of independent Brownian motions; thus, for ¢ € [0, 1],

B, (1) = W,(t) — tW,(1}
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represents a g-vector of independent Brownian bridges.
Note that for any fixed 7 € (0,1),

B,(t) ~ N(0,#(1 — t)1,).

The normalized Euclidean norm of B,(t),

Qq(t) = [IBo B}/ /21 ~ 2),

is generally referred to as a Besse] process of order ¢. Criti-
cal values for sup Q2{t) have been tabled by DeLong (1981)
and, more extensively, by Andrews (1993) using simulation
methods. The seminal work on Bessel processes and their
connection to K-sample goodness-of-fit tests seems to be
that of Kiefer (1959). Again, for any fixed ¢ € (0,1} we
have, from (11), Q2(z) ~ xZ. Thus we may interpret Q2(1)
as a natural extension of the familiar univariate chi-squared
random variable with ¢ degrees of freedom. Note that in the
special case ¢ = 1,sup @§(-) behaves asymptotically like a
squared Kolmogorov-Smirnov statistic.

To characterize the behavior of the test statistic under lo-
cal alternatives, it is helpful to define a noncentral version of
the squared Bessel process as an extension of the noncentral
chi-squared distribution. Let u({%) be a fixed, bounded func-
tion from [0, 1] to k9. We refer to the standardized squared
norm.

(11)

1) + By ()] /(11 — )
as a squared noncentral Bessel process of order ¢ with non-
centrality function n(r) = p(t) p(t)/(t(1 — t)) and denote

it by Qﬁ,n(:)' Of course, for any fixed ¢ € (0,1),Q2 ) ~

Xa.me)» @ NONcentral x; random variable with ¢ degrees of
freedom and noncentrality parameter n(t). We adopt the
following standard notation for partitioning matrices like
D defined in condition A.2 (b): D;; i,7 = 1,2 denotes the
ijth block of D, and D% denotes the ij block of DL
To illustrate, recall that D?2 = (Dgy — Dy D 'Dyy)
Finally, the symbol = denotes weak convergence; ~», con-
vergence in distribution; and —, convergence in probability.
We can now state our first result, which is proven in the
Appendix.

Theorem 1. Let T = [g,1 — ¢], for some £ € (0, 1).
Under conditions A.1-A.3,

Ln(f) = Qi:"?(f} (’F) for 7€ T|

where n(r) = {(r}(D??)71(r)/w?(7), and w(t) =
+/T{1 — 7}s{7). Also, under the null hypothesis (10},

sup Ly (1) ~ sup Qg('r).
TET TET

The alternative form of the quantile g process based on
the location-scale form of the p test has the same asymptotic
hehavior.

Corollary 1. Under conditions A.1-A3, A,(r) =
L.(7)+ 0,(1), uniformly on 7.

The foregoing results enable the investigator to test a
broad range of hypotheses regarding the joint effects of co-
variates while also restricting attention to specified ranges
of the family of conditional quantile functions. Thus, for
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example, we may focus attention on only one tail of the
conditional density, or on just a neighborhood of the me-
dian, without any prejudgment that effects should be con-
stant over the entire conditional density as in the conven-
tional location-shift version of the classical linear regression
mode].

2.3 Wald Processes

One disadvantage of the quantile p tests proposed here
is the required estimation of the nuisance sparsity func-
tion, s{7). A potentially more serious disadvantage is that
they require the null model to take the pure location-shift
form, so the conditional density of the response at any
7 & T is independent of the covariates z. This difficulty
with the LR approach is familiar in many other contexts
(see, e.g., Foutz and Srivastava 1977). One way to relax the
latter restriction is to turn to Wald versions of the inference
process.

In this section and the one that follows, we relax the
iid error assumption used earlier and consider the location-
scale shift model used by GI

yi = X8+ o5, (12)
where o; = x;7y and the {u;} are assumed to be iid from
distribution function F. We denote I',, = diag(o;) and in-
troduce the following additional assumption:

A4. Suppose that model {12) holds with conditions
A.l-A.3, that the elements o; are bounded away from 0
and infinity, and that G,, = n"1X,I';1X,, tends to a posi-
tive definite matrix.

The conditional quantile functions of the response, ;,
under (12) may be written as

Qy. (7[%:) = x;8(7),
where 3(7) = A+~F~'(7) and which we may again parti-

tion as 3{r) = (B(r},B:(7)"). The representation (5.25)
of GJ yields, uniformly for 7 € T,

Va(B(r) = B(7)) = s(7)Gy, ' galT) + 0p(1),
where ga(r) = n~H2 S x,t, (u; — FH(r)) and i (u) =
7 — I{u < 0). Thus, setting ¥ = [0, we have
Vi(Ba(7) — Balr)) = s(T)U G gal7) + 0p(1),
and by thearem 1 of GI it follows that
VI(Ba(T) = Ba(T)) = s(T)Q/*By,

where 2 = G 'D, G, ¥’ and B, denotes a g-vector of
independent Brownian bridges.

Theorem 2. Under conditions A.1-A.4,

W (1) = nfBa(7) Q7 Ba(7) /(1) = Q] oy (7)

for 7T,
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where n{7) = ¢(7)'Q (7} /w?(r). Also, under the null
hypothesis,

sup W, (1) ~ sup Q (r}.
TET
Note that in the “homoscedastic” case I' = I, the sand-

wich form of the matrix €2 collapses to D22, and the Wald
process has the same asymptotic behavior as the two p pro-
cesses. More generally, the Wald process enables us to relax
the stringent location-shift, iid error assumption underlying
the p processes. In exchange, it requires us to estimate the
matrix, (3,,, a tagk somewhat more onerous than the scalar
sparsity estimate needed for the p processes. We defer the
question of estimating G, until the end of this section, and
turn now to a third variant of the inference process.

2.4 Rankscore Processes

The regression rankscore process introduced by GJ arises
from the formal dual problem of the linear programming
formulation of the primal quantile regression problem. It
may be viewed as providing a natural generalization to the
linear model of the famihar statistical duality of the or-
der statistics and ranks in the one-sample model. As such,
it provides a fundamental link between quantile regression
and the classical theory of rank statistics as presented by
Hijek and Siddk (1967). The rankscore process may also
be interpreted as an implementation of the Rao score, La-
grange multiplier principle for quantile regression infer-
ence.

The regression rankscore process for the restricted form
of the linear location-scale model (12) is given by

8 (r) = argmax{y'a|Xja = (1 - 7)X}e,a € [0, 1"}, (13)

where e denotes an n-vector of 1’s and the n by » matrix,
X, has been partitioned as [X;:X3] to confirm with the
partitioning of the hypothesis. The problem posed in (13)
is the formal dual problem corresponding to the (primal}
quantile regression linear program under the restriction im-
posed by Hy. Using theorem 1 of GJ, theorem 5.1 of GIKP
may be easily extended to confarm to the conditions of the
location-scale shift model (12).

We can consider tests of the hypothesis Hg based on the
statistic

T, = 8, M; S, /A%(p),

where

Sn = n_lﬂ(xﬂ - 5(2)!5?11

Xy = X (XD X )7 XD M X,

M, = (X3 — X5 (X, —

b= (- [ b dante) ,

and ¢ is a score-generating function of bounded variation.
It may be emphasized that the only modification of the test

XA;Q)/“‘J
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statistic relative to the formulation of GIKP is the appear-
ance of the matrix T'y, in the expression for X,. In effect
we have simply replaced an ordinary least squares fit by a
weighted least squares fit at this point. The following result
extends theorem 5.1 of GIKP ta the context of the linear
heteroscedastic model (10).

Theorem 3. Let . [0,1] — R denote a function of
bounded variation that is constant outside a compact subin-

terval, 7, of (0, 1). Set A%(p) = fo @(t))? dt with
P = fol () dt. Under conditions A.1 A.4,

T~ Xﬁ(??(% QJ)a

where 7(p,{) = ('Q7I¢/A (), with E(p, ¢ F) = [, ¢
FETHE)) deot)-

Here we are interested primarily in the special quantile
score function,

or(t) =7 - It <7},

which focuses attention exclusively on the 7th quantile. For
this score function, @ = 0 and A%(p,) = 7(1 — 7). The
quantile scare function yields rankscores

b, =a,(r) — (1 —1),
s0 £{,, ¢, F) = {(r)f(F~Y{7)). This allows us to define
the quantile rankscore process,

Tn(7) = Sulr) M 8 (7} /(r(1 = 7)),
which can be used in lieu of W, {7).

Thearem 4. Under conditions A.1-A.4, T,,(r] = W, (7)
+ 0,(1}, uniformly on 7.

When I',, = I, a crucial feature of this form of the test
that distinguishes it from the corresponding p test processes
is that, because the rank score process a,(7) is scale invari-
ant, T, does not require any estimate of the nuisance pa-
rameters 5(7) or ¢(7). In this case, Jureckova (1992) treated
the case g = 1 and related the test to the Héjek and Sidak
(1967) extension of the Kolmogorov-Smirnoyv to regression
alternatives. This scale invariance is a very substantial ad-
vantage over bhoth the p test and Wald approaches to testing
in quantile regression, as was already stressed by Koenker
and Bassett (1982). However, it should also be noted that
like the Wald approach, when the null is formulated to ad-
mit heterogeneity in the matrix I',, as in the location-scale
madel, the rankscore process also requires an estimate of
this nuisance parameter, as does the Wald process.

2.5 Estimation of Nuisance Parameters

It is an somewhat unhappy fact of life that the asymptotic
precision of quantile estimates in general, and quantile re-
gression estimates in particular, depend on the reciprocal of
a density function evaluated at the quantile of interest—a
quantity Tukey (1965) termed the “sparsity function” and
Parzen (1979) called the quantile-density function. It is per-
fectly natural that the precision of quantile estimates should
depend on this quantity, because it reflects the density of
observations near the quantile of interest. If the data are
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very sparse at the quantile of interest, then it will be dif-
ficult to estimate. On the other hand, when the sparsity is
low, so that cbservations are very dense, the quantile will be
mare precisely estimated. Thus, to estimate the precision of
the rth quantile regression estimate directly, the nuisance
quantity

s(r) = [f{(FH )]~
must be estimated, and this leads us into the realm of den-
sity estimation and smoothing.

Luckily, there is a large literature on estimating s{7) in
the one-sample medel, including works by Bofinger (1975),
Sheather and Maritz (1983), Siddiqui {196Q), and Welsh
(1987). Siddiqui’s idea is simplest and has received the most
attention in the literature, se¢ we focus on it. Differentiat-
ing the identity F(F~'(#)) = £, we find that the sparsity
function is simply the derivative of the quantile function;
that is,

d __
5 F L) = s(t).

So, just as differentiating the distribution function F yields
the density function f, differentiating the quantile function
F~1 yields the sparsity function s. It is thus natural, fol-
lowing Siddiqui, to estimate s(£) using a simple difference
quotient of the empirical quantile function; that is,

8uft) = [FH(E + hn) = ESME — Bl /20,

where F~! is an estimate of =1 and h,, is a bandwidth that
may tend to () as n — co. A bandwidth rule suggested by
Hall and Sheather (1988) based on Edgeworth expansions
for studentized quantiles is

b =2 LBs(0) /5" (0],

where z, satisfies ®(z,) = 1 — /2. In the absence of other
information about the form of s{.}, we may use the Gaussian
madel to select the bandwidth h,,, which yields

B, = n V323152 (D)) (2B () + 1),

Having chosen this bandwidth 4, the next question is
how to compute #~1. One approach to estimating F~ is to
use the empirical quantile function suggested by Bassett and
Koenker (1982). In effect this amounts to using Fy‘l(t) =
%'B(t), where 3(-) is the usual regression quantile pracess.
The functions

Qy(7lz) = x'B(r)
constitute a family of conditional quantile functions for the
response variable y. At any fixed x, we can regard @ (7|x)
4s a viable estimate of the conditional quantile function of
y given x. Of course, the precision of this estimate depends
on the x at which we evaluate the expression, but the pre-
cision is maximized at x = %. This makes F, > (t) = '4(¢)
an attractive choice, but we should verify that as a functien
of T, this function satisfies the fundamental manotonicity
requirement of a quantile function. It is clear that the esti-
mated conditional quantile functions fitted by quantile re-
gression may cross—indeed, this is inevitable, as the esti-
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mated slope coefficients are not identical, and thus the func-
tions are not parallel. One might hope and expect, however,
that this crossing occurs only in remote regions of design
space—crossing should not accur near the centroid of the
design, X. This is indeed the case. Theorem 2.1 of Bassett
and Koenker (1982) established that Q,(7[%) is monotone
in 7. Thus, in the iid error model, where we need only a
scalar estimate of the sparsity function at each 7, we pro-
pose using

§n(t) = [Qy{t + hn|i) - Qy(t - hn[i)]/ghw

Having described an approach to estimating the scalar
sparsity parameter, we now briefly describe two approaches
to estimating the matrix G,,. One is a natural extension of
sparsity estimation methods described earlier, suggested by
Hendricks and Koenker (1992). The other, which is based
on kernel density estimation ideas, was proposed by Powell
(1989).

Provided that the rth conditional quantile function of
Qy(7|x} is linear in x, then for h, — 0, we can consis-
tently estimate the parameters of the v £ A, conditional
quantile functions by B(7 £ k). The density f,(Q,(7|x;)}
can thus be estimated by the difference quotient,

FAQy(r1%:)) = 2hn f¥{(B(T + Bn) = BT — ha)).

Note that in the location-scale model (12) even for a fixed
handwidth we can obtain estimates of the g;’s that are con-
sistent up to scale, because

X (BT + hn) = B(T — Bn))
2k,

where Ay, = (F~ Y7 + A} — (F~Yr — h}}/2h is a fixed
scalar independent of ¢. For the rankscore statistic, T, (1),
this factor A, cancels in the expression for X, so it plays
no role. For the Wald statistic, we still require an estimate of
the scalar sparsity parameter at each 7, but it is possible to
estimate the matrix T',, in this fashion and then to estimate
the scalar sparsity parameter using a weighted version of
the approach described earlier.

A potential difficulty with the proposed estimator f; is
that there is no guarantee of positivity for every observation
in the sample. Indeed, as we have just seen, the quantity

di = X B(7 + hn) — BT — k)

1s necessarily positive only at x = X. Nevertheless, in prac-
tice we find that problems due to “crossing” of the esti-
mated conditional quantile planes occur only infrequently
and then only in the extreme regions of the design space.
In our implementation of this approach, we simply replace
f; by its positive part; that is, we use

fF = max{0, 2k, /(d; — €)},

where £ > ) is a small tolerance parameter intended to avoid
dividing by O in the (rare) cases in which d; = 0 because
the ith observation is basic at both 7 £ A,,. Substituting this
estimate in the foregoing expression for G,, yields an eas-
ily implementable estimator for the asymptotic covariance
matrix of B(r) in the non-iid error model.

i
= ;YA = G,
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Alternatively, Powell (1989) suggested a kernel-based
method for estimating the quantile regression covariance
matrix sandwich. Noting that in estimating the matrix
G, {7), what we are really after is a matrix weighted den-
sity estimator, Powell proposed a kernel estimater of the
form

Go(r) = (nhn) ™D " K (G4(7) /hn)xix],

where 4;(7) = y; —x,3(7) and h,, is a bandwidth parameter
satisfying h., — 0 and /nk, — oo. He showed that under
certain umiform Lipschitz continuity requirements on the
fi,Gn(7) ~» Gp(7) in probability. In practice, of course,
there remain a number of nettlesome questions about the
choice of the kernel function K and the bandwidth param-
eter A,.

Finally, we conclude this section by remarking that the
nuisance parameters, s(7), (7}, and I',, appearing in the
varicus versions of the process, L,,, A, W,,, and T,,, may
be replaced by the aforementioned estimates without al-
tering the asymptotic behavior of the respective processes.
(See lemma 6 of GI for further details.)

3. SOME ILLUSTRATIVE EXAMPLES

In this section we continue to explore the behavior of
the processes intreduced in the previous section, using a
range of artificial data. In preliminary experiments the per-
formance of tests based on L, and A, were essentially
indistinguishable, so we choose to drop L, in the subse-
quent comparisons. We should emphasize that the quantile
o tests based on L, and A, are limited in scope of appli-
cation by the fact that they presume iid errors under the
null hypothesis. This is reasonable in the illustrative ex-
amples of this section and in our Monte Carlo, because in
such circumstances the null model contains only an inter-
cept. However, in many empirical contexts, including the
one explored in Section 4, this assumption is highly im-
plausible. We have also chosen to defer consideration of
the Wald process, W,,(7), to future work. This statistic is
considerably more cumbersome to implement than the cor-
responding rankscore test, T3, {7), and thus it seems prudent
to focus our initial attention on T, (7).

To develop some experience interpreting these processes,
it seems valuable to consider a variety of simple bivariate
regression settings, illustrated in the top row of panels of
Figure 1 and described in detail here.

Model 1: Pure Gaussian Noise. The data in the first
column of Figure 1 were generated with {y;} iid standard
normal and independent of x. The {z;} were generated as
iid NM(5,1) and n = 100.

Madel 2: Gaussian Location Shift.  The data for the sec-
ond column of Figure 1 corresponds to the classical regres-
sion model in which

Yi = Zi T g

with {u,} iid A(0,1), {z;} iid A’(5, 1), and n = 100.
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Model 3: Gaussian Scale Shift. The third column of
Figure 1 illustrates a pure heteroscedastic version of the
regression model in which

1
Ui = (J‘.,;; + E 9”.,12) iy
with {u;) iid A(0,1/100), {z,) iid A’(3, 1), and n = 100,

Maodel 4: Nonlocation Scale.  Finally, the fourth celumn
of Figure | has a somewhat more peculiar configuration in
which for small values of z, we observe a unimodal con-
ditional density for y, whereas for larger values of x, we
have a bimodal conditional density of y. Formally, letting
Q,(7|z) denote the rth quantile of the distribution of y
given x, we may express the model as

Qulrlz) =z + 227 (r) + (1 - 2)H " Hr),

where {z;} iid U[0,1],®~1(7) is the standard Gaussian
quantile function and H~! is the quantile function of a
Gaussian mixture distribution of the form

H(w) = 5 8((u—m)/or) + 5 B((w— /o),
and we have taken (g1, po) = (—1.08,1.08) and {o7,03) =
(1/8,1/8). These choices make the conditional dispersion
of y given x roughly constant in 2. In this example n = 300.
Each of these models may be expressed in the following
quadratic formulation:

Qy(r|z) = Bo(r) + Ai(r)z + Falr)2?,

where the parametric functions (Go{7), Br{7), G2(7)) are
given in Table 1. Estimates of the parameters of these con-
ditional quantile functions for r € {.1,.25,.5,.75,.9} are
depicted by the solid lines in the first row of panels in Fig-
ure 1.

For models 1, 2, and 4 we compare the unrestricted linear
maodel,

(14)

Qy(7lz) = folr) + fu(7)z, (15)

with the null model,

Qy(7|z) = fa(7). (16)

For model 3 we campare (14) with (16). Because the null
model (16) contains only an intercept, the appropriate form
of the T, process uses I',, = I in all four models.

The last three rows of Figure 1 illustrate the realizations
of three of the processes introduced in the previous section,
RY(7),An{7), and T,(7), for the data depicted in the first
row of panels corresponding to the four models.

For model 1 we would expect that the R’ process to be
nearly 0 over the entire range of € (0, 1), and this expec-
tation is borne out in the panel below the data. Likewise, we
would expect to find that the A,, and 7., processes behave
according to their theory under that null hypothesis; that is,
like the square of a normalized Brownian bridge process
in this case—an expectation that is also consistent with the
appearance of the last twa panels of the first column, which
represent the A, and T,, processes.
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Figure 1. Some Mustrative Examples of Goodness-of-Fit Processes. The figure iflustrates four different data configurations and their associated
R’ An, and Ty functiona. The firat row depicts the data, with the solid fines representing the filted conditional guantife functions for + € {.1, .25, 5,
.75, .9\, The second row depicls the R’ procass; the third row, the An process; and the fourth row, the T, process.

The second column of Figure 1 illustrates results for
madel 2. The pure location shift regression effect may be
expected to yield a flat R function, indicating that all con-
ditional quantiles are equally.successful in reducing vari-
ability (as measured by the weighted sum of absolute errors)
relative to the unconditional counterparts. The A, and T,
processes both indicate a highly significant departure from
the null theory aver the entire range of 7 in this case, as we
would expect to see.

In model 3 the conditional quantile functions fan out from
the arigin, and it is clear that the median fit of the full
regression does not improve on the restricted fit; that 1s,
the conditional median and the unconditional median are
equal. However, for quantiles other than the median, there
is a clear benefit from the quadratic form of the conditional
quantile specification. This is reflected in the shallow bowl-
shaped curve representing the R! process in this case. This

pattern is also apparent in the A, and T, processes, which
are marginally significant in the right tail and marginally
insignificant in the left tail. Note that in this mode] we have
estimated a quadratic quantile regression model so the L,
and T, processes have order g = 2.

The last column of Figure 1 shows the results for model
4. Like model 3, this configuration also yields a much more
pranounced effect away from the median, as is also appar-
ent in the plots of the A,, and T, processes. Note that in
this case conventional tests of heteroscedasticity would be

Tabte 1. Quaniite Reagression Coefficients

Model 1 Model 2 Madef 3 Modet 4

Bol? 0 &7 0 H Y7

A7 aQ 1 08~ "n 1+~ ") —H'(A
Ha(7) 0 0 02587 )
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unlikely to detect any effect of the covariate z, because
scale varies very little with respect to z. '

As with conventional R?, large values of R! and the asso-
ciated test statistics correspond to situations in which con-
ditionagl estimates differ significantly from umconditional
estimates, Thus in the heteroscedastic cases, R! and the
tests indicate no effect near the median, where the condi-
tional quantile function is horizontal. However, in the tails
conditional and unconditional quantiles differ substantially,
as indicated by an upward curve in the tails. Similarly, in
the bimodal case the conditional quantile functions at the
median and in the far upper tail are essentially constant,
whereas in the lower tail and upper shoulder of the dis-
tribution there is a substantial effect. In the Section 5 we
report some results from a small Monte Carlo experiment
that offers a somewhat more systematic evaluation of the
performance of these methods.

4. AN EMPIRICAL EXAMPLE

In this section we describe a brief empirical foray into
models of international economic growth designed to 1llus-
trate the use of some of the methods described earlier. The
data consist of a pooled sample of 161 ohservations, on
national growth rates for the two periods 1965-1975 and
1975-1985, taken from Barro and Lee (1994). The data are
similar to those used by Barro and Sala-i-Martin (1995),
but unfortunately nat identical. There are initially 87 ob-
servations from 1965-1975 and 97 from 1975-1985, but
only [61 after removing observations with missing data for
the model estimated. This model is the same as the ba-
sic model reported by Barro and Sala-i-Martin (1995, table
12.3). The intention is to try to identify the effect of certain
covariates more explicitly in terms of their influence on
specific ranges of the conditional quantiles of the growth
process.

Work by Barro and others has focused considerable at-
tention on the effect of the lagged level of per-capita gross
domestic product (GDP) on the growth of this variable. Fig-
ure 2 plots this effect as estimated in a quantile regression
that also includes the variables indicated in Figure 3. The
solid, rather jagged line in this figure is the coefficient on
initial per-capita GDP from the quantile regression plotted
as a function of the 7. The dotted straight line is the least
squares coefficient for the same variable. The long dashed
lines with intermittent dots represents a confidence band for
the quantile regression process constructed from the rank
test inversion approach described by Koenker {1994, 1997),
but modified as in Thearem 3 to accommodate the effect of
heterogeneity through the estimation of the matrix T",, as de-
scribed in Section 2.5. The solid horizontal line at the top of
the plot represents the null effect of initial GDP an growth
over the entire range of . Clearly, Figure 2 suggests that
the effect of the initial level of GDP is relatively constant
over the entire distribution, with perhaps a slightly stronger
effect in the upper tail. Barro and Sala-i-Martin (1995) com-
mented that, given the 10-year increments of the data, the
least squares coefficient of —.026 “implies that convergence
occurs at the rate of 3.0 percent per year” Note that to
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convert to annual rates from [0-year increments (Barro and
Sala-i-Martin 1995, p. 422), compute —{1 — e~1%%)/10.

The notion of convergence implicit in this interpretation
may seem a bit strained, as the model underlying the least
squares fit of a pure location shift effect of initial GDP im-
plies a stationary distribution for national incomes, a situa-
tion in which there is no convergence. Stigler (1996) consid-
ered a rather amusing, but similar empirical example from
the early industrial organization literature. Note, however,
that if the initial GDP effect in Figure 2 could be interpreted
as suggesting a downward sloping effect, this would imply
a stronger sense of convergence in which the scale of the
international distribution of per-capita income would shrink
over ime. Obviously, the evidence for this in the figure is
tenuous at bhest.

The effects of the remaining variables are quite varied
and thus perhaps more interesting. We will try to isolate
a few of these effects in our discussion. Consider first the
effect of public consumption as a share of GDP. The least
squares effect of —.11 suggests, according to Barro and
Sala-i-Martin, that an increase of 6.3%, or one standard de-
viation, in G/Y reduces the expected growth rate by 7%
per year. The quantile regression results indicate that this
effect is essentially constant over the upper half of the dis-
tribution, but may be considerably larger in the lower tail.
Improving the terms of trade appears to exert a monoton-
ically increasing effect in 7, suggesting that this variable
tends to help faster-growing countries proportionally more
than those countries in the lower tail of the growth dis-
tribution, thus tending to accentuate the inequality among
nations. In contrast, a larger black market premium appears
to slow the growth of the upper tail countries more than that
of the lower tail countries, None of the education effects (s
particularly clear. There is some indication that the effect

-0.01 0.0

-0.02

-0.03

-0.04

0.0 0.2 0.4 0.6 .8 1.0

Figure 2. Estimated Quantife Regression Effect of initial Per-Capita
GOP on GOP Growth. The figure filustrates the estimated guantile re-
gression process for iniial per capita GDFP in a mode! for GDP growth
that also includes the variables indicated in Figure 3. The rather jagged,
solid fine is the guantile regression process for the initial GDP effect, the
harizontaf dotted fine indicates the esiimated conditional mean (location-
shift) effect estimated by ordinary least squares, and the dashed fines
indicate a rank test—based confidence band for the quaniiie regrassion
effect. The band clearly excludes ihe nulf effect indicated by the solid
harizontal tine at 0 at the top of the figure.
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Figure 3. Estimated Quantite Regression Effects of Other Variables on GDP Growth. The figure flustrates the estimated quamile reqression
process for 12 other variables in a modef for GOP growth. The format of the plot follows that of Figure 2.

of male secondary education is increasing in 7, again sug-
gesting that the effect of an across-the-board increase in
this variable would be to accentuate international inequal-
ity. Curiously, the human capital variable appears to exhibit
the opposite effect, but, as the confidence band suggests,
this effect is rather weak.

Individually, the five education variables seem to exert
a rather weak effect on growth, but, not surprisingly, it is
difficult to distinguish their separate effects. An obvious ap-
plication of the hypothesis testing apparatus intreduced in
Section 2 is to consider the joint effect of the education
variables in the foregoing model. This is done in Figure 4,
where we plot the R'(7) function and the corresponding
An(7} and T, (7) processes corresponding to the null hy-

pothesis of no joint effect of the education variables. Here,
because the null hypothesis imposes no presumption of ho-
mogeneity on the elements of T',, we have estimated this
matrix as described in Section 2.5, In this plot any depar-
ture from the null, whether positive or negative, appears as
a positive effect, so we can no longer distinguish the nature
of the effects in quite the detail provided by the plots of
the individual effects of the variables. From work of An-
drews {1993), we find that for ¢ = 5, the critical value for
the sup @%(7) over the interval [.05, .95] at a = .05 is given
by 19.61. Thus the A, version of the test fails to reject
the null of no joint significance; however, the rank-based
T, version of the test does, marginally, reject. Because iid
error conditions are quite clearly implausible here, the va-
lidity of the A, test is highly questionable. We try to shed
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Figure 4. Joint Effect of Education Variables on GOP Growith. (a) The R’ (r) function correspanding to the null Aypathesis of no effect of any of
the five education variables in Figure 3. Note that the somewhat bowi-shaped R plot suggests that these variables taken together have somewhat
targer positive effects on growth in both tails of the conditional growth distribution than they 0o in the center of the distribution. This feature is also
apparent in the adjacent A, process plot (b). However, the corresponding rank-test, Ta, (c) appears to indicate a monotonically increasing effect of

the education variables.

more light on this conflict between the tests in the next
section.

5. MONTE CARLO

In this section we report on a small Monte Carlo exper-
iment designed to evaluate the performance of the asymp-
totic theory developed in Section 2 as a guide to the finite-
sample behavior of the proposed tests. To this end, we re-
consider the four models introduced in Section 3 and try
to evaluate size and power of the A, and T,, versions of
the tests for several different sample sizes. At this stage we
make no effort to compare power of these tests with other
tests available for these hypotheses, but it is clear that be-
cause the alternative is rather general, we would expect to
be able to provide more powerful tests for each of explicit
alternatives.

Table 2 reproduces a small extract from Andrews’s (1993)
table of critical values for the sup, . Q@2(7} process. We
consider enly the case of 7 = [.05,.95] and g € {I,2,4}. To
help calibrate the values in this table, we might recall that
the critical values for chi-squared for 1, 2, and 4 degrees of
freedom are 3.84, 5.99, and 9.49 at o = .05.

To evaluate the size of the sup tests, we consider the
model

P
yi= Y i385+, (17)
i=1

Table 2. Critical Values for sup Ap and sup Tn Tests

g a= .10 o =.08 o= .07
1 8.18 g.84 13.01
2 11.20 1283 16.44
4 15.62 17.56 2154

NOTE: The entries canstitute a small extract from a much larger table of Andrews (1893). Each
entry is £, sych that F'r(sup{fe[_aa.sﬁ]} Q; < £5] = ¢e. The *degrees of freedom” paramater
¢ is the number of finear restrictions imposed by the null hypathesis. These oritical values are
used in the Monte Carla ewaluation gf the size and power perfgrmance of the tests.

where 2, [ and {z;: j = 2,...,p} are iid from the
standard normal, A'(0, 1), distribution. The {u;}’s are drawn
as iid from A (0, 1}, Cauchy, or x4 distributions. For the size
simulations reported in Table 3, we take 4 = {f;) = 0.
The null hypaothesis for the size simulations is, of course,
8; =0,7=2,...,p and we take ¢ = p — 1 with p = 2,3,
or 5. The proportion of rejections in 500 replications for
each of the two tests is reported in Table 3. It is clear that
both tests are undersized, rejecting at less than the specified
nominal rates. The T;, test performs somewhat better in this
respect than the A, test, but it is clear that both tests would
benefit from some size correction.

Table 4 considers the power of the sup A, and sup T,
tests in a setting that differs from the size simulations
in only one aspect: The parameter A, is now set to 1/2,
rather than Q. To provide some comparisen with conven-
tional hypothesis testing methods in this iid error linear
model setting, the table includes entries reporting the re-
jection frequencies of the classical F test. We expect to
find better performance from the F test in the Gaussian
and chi-squared cases, hut in the Cauchy case the F' test
is poor, whereas the sup A,, and sup T,, tests perform quite
well.

To further illustrate the power of the new tests in cases
where the F test is unsuccessful, we consider in Table
5 two variants of the heteroscedastic and bimodal exam-
ples of Sectien 3. For the heteroscedastic model (model
3 of Sec. 3), we adopt the quadratic specification used in
Figures 1,

yi = o+ (B + yzh Ui, (18)
with {.T,l.,; = 1}, {ﬁji} iid N(S? 1), fory=2,...,p and '['U..g‘,}
iid AM{0,1/100}, with & = 0,8 = 1, and v = 1/4. In this
case,

E(yilz) = 0,

so the classical regression F' test has asymptotic power
equal size, but the quantile regression tests have power from
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Table 3. Mome Garfo Sizes of the sup A, and sup T, Tests

Gaussian Catuchy x2
Test n fal 7 as a1 i K5 a1 i K5 a1
Ap 100 1 000 000 000 004 004 004G .002 Qa2 000
T 100 1 042 018 Q02 044 022 08 D44 Q08 008
An 100 2 004 002 00 002 Relops 000 Q04 002 000
Ta 100 2 042 022 002 040 024 Q08 038 018 002
Ag 100 4 Q00 1000 Q00 ag2 400 000 Q00 000 Q0o
Tn 100 4 038 Q18 Qg2 038 022 Qo2 Q38 018 Qo2
An 500 1 022 Lag I4] .00z 006 004 Rélelo] 028 14 000
Tn 500 1 058 032 012 058 022 006 078 036 006
Aq 500 2 D24 Q410 Qo2 004 000 000 01z 004 000
Th 500 2 068 040 oz (058 020 004 058 028 06
An 500 4 Q12 06 002 004 000 000 012 008 Qa0
Ta 500 4 066 042 Q010 066 034 .006 054 028 004

NOTE: The table is based an 500 replicatians per cell. Edch cell reparts the prapartian af rejections of the designated test at the designated level of significance using the eritical values appearing
in Tahle 2 taken from Andrews {1993), The model in each case is (17) with oy = 1 and {x,-’:‘. f= 2. p} iid standard Gaussian and {y,} iid fram one the three distributions indicated at the

top af the table. In ¢ach case T = (05, G5l and g = p — 1.

both tails of the distribution, because the conditional quan-
tiles process is Qy(7|z) = {z + 1/42%)®~ (7).

In the bimodal example {model 4 of Sec. 3), we set

yi = (1 — 220)® Hus) + 22 H  Huw), (19)

where {z1; = 1l},2z4 ~ UO,1), for 7 = 2,...,p,u ~

U[0,1],97 1 is the standard Gaussian quantile function, and

H™! is the quantile function of the Gaussian mixture with
distribution function,

Hw) = 5 8((w—m)/or) + 5 Bl — p2)/oa),

=N

which needs to be computed numerically. We again chose
{1, 2} = (—1.08,1.08) and (g;,a,) = (1/8,1/8) so H is
symmetric and bimodal. As in the heteroscedastic case, for
this model,

E(yilz:) =0,

so the F' test has asymptotic power equal size, but the quan-
tile regression tests may be expected to perform well, be-
cause there are linear conditional quantile functions with
nonzero slope for all 7 # 1/2 (notice that Q,(1/2lz} = Q).
Several features of Table 5 merit attention. The new tests
are a clear success at n = 500, where they have power near
1 in virtually all cases. In contrast, the F' test performs
abysmally as expected; with larger p, there is some appar-
ent power from the F test, but this is spurious, because
E(y|z} = 0 in these cases. With n = 100, the alternative
is obviously more difficult to discern. Here it is clear that
the sup T test has a real advantage over the sup A,,. This
1s presumably largely a consequence of the size distortion
that we have already observed in Table 3. Because both the
T, and A, tests are significantly undersized, effective size
correction would presumably yield improvement in power
in bath Tables 4 and 5. This is a topic that deserves further
investigation.

Table 4. Mante Caria Power of the sup Ap and sup T, Tests in Linear Models with fid Errors

a

Gaussian Cauchy Xy

Test n g 1 .05 .01 A .05 .0t 1 .05 .0f

An 100 1 816 820 546 472 54 126 338 202 .054
Ta 104 1 888 8960 850 750 B16 384 536 418 206
F 100 1 1.000 1.000 1.000 354 254 130 964 840 842
An 100 2 788 .B40 314 312 194 054 180 .084 020
Ta 100 2 a52 906 708 604 468 282 388 270 100
F 100 2 1.000 1.000 1.000 528 446 310 882 874 838
Ap 1040 4 514 348 116 120 072 010 078 036 008
T 100 4 .888 778 514 474 334 136 288 182 064
F 100 4 1.000 1.000 1.000 B4 788 G646 .896 892 282
An 500 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 298 894
Tn 500 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .88 898
F 500 1 1.0400 1.000 1.000 318 228 118 1.000 1.000 1.000
An 500 2 1.000 1.000 1.000 1.000 1.000 888 8938 998 284
Ta 500 2 1.000 1.000 1.000 1.000 1.000 998 998 996 884
F 500 2 1.000 1.000 1.000 514 430 278 1.000 1.000 1.000
Ap 500 4 1.0400 1.000 1.000 1.000 894 288 992 986 926
Ta 500 4 1.000 1.000 1.000 1.000 1.000 094 1.000 994 272
F 500 4 1.000 1.000 1.000 812 758 652 1.000 1.000 1.000

MOTE: The table is based on 500 replications per sell. Each gell reparts the praportion of rejestions aof the designated test at the designated level of significance ysing the critical values appearing
in Table 2 taken fram Andrews (1983), The madel in each case is (17) with ¥; = 1 and {x,-;:;' =2 ..., p} iid standard Gaussian, A = {0, 5, 40,..., 0] £ AP, and {U,-} iid from ane the three

distributtans indicated at the top of the tatle. In each case T = [0&, 8] and g = p — 1.
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Tabie 5. Monte Carla Power of the sup An and sup T, Tests in a Bi-Moaal Transition Model and a Purely Heteroscadastic Madel

Bimodal Heteraoscedastic
Test n q N .08 a1 1 .05 .01
An 100 1 234 A42 030 226 .098 Q06
Tn 100 1 314 A74 054 836 Faa 472
F 100 1 A6 066 028 196 122 0480
MAn 100 2 A04 050 008 070 014 Qa0
T 100 2 192 114 038 706 582 332
F 100 2 298 222 108 346 282 1440
An 100 4 024 008 000 002 000 000
Ta 100 4 130 072 .08 534 388 154
I3 100 4 688 608 466 798 722 540
An 500 1 1.00¢ 1.000 894 1.0G0 1.000 1.000
Ta 500 1 1.000 1.000 892 1.000 1.000 1.000
F 500 1 Q96 080 010 164 100 024
An 500 2 1.000 894 .858 1.040 1.000 1.000
Tn 500 2 1.0040 .g488 962 1.000 1.00G 1.000
F 500 2 314 218 02 404 318 148
An 500 4 994 82 B12 1.000 1.000 1.000
Ta 500 4 .896 878 800 1.0G0 1.000 1.000
F 500 4 738 B80 480 760 706 540

NOTE: The table is Based an 5040 replications per cell. Each cell reparts the praportian of refectians of the designated test at the designated level af significance using the aritical values appearing
in Table 2, The madel in the heterascedastie eases fs (18] and in the bimodal case ig (19), In gaeh case T = [06, 45], and ¢ = p — 1.

6. CONCLUSIONS

We have suggested a goodness-of-fit criterion for quan-
tile regression that generalizes the proposal of McKean and
Sievers (1987) for [, regression and adapts it to an arbi-
trary linear hypothesis. We have introduced three related
goodness-of-fit processes, A, (7), W,.(7), and T,.(7}, which
significantly expand the available toolkit for inference in
quantile regression models. For a given 7, the proposed test
may be regarded as variants of the LR, Wald, and Lagrange
multiplier tests for I; regression. The tests have an asymp-
totic theory involving Bessel processes that is closely re-
lated to earlier work on inference for goodness of fit as well
as to mote recent work on inference in changepoint mod-
els. We have focused on sup A,(7) and sup 7,,{7) forms
of the tests, but there is considerable scope for expand-
ing the range of tests. Extensions to Cramér—von Mises
forms are obviously possible along the lines of work done
by Portnoy (1992). It would also be useful to investigate ex-
tensions to null hypotheses that involve unknown nuisance
parameters along the lines of work of Durbin (1973) and
others.

APPENDIX: PROQFS

Proof of Theorem 1
Let

Val8,7) = D pr(walr) — wlr)id/ /),

where wir) = Mr)s(r),3*(7) = (1 — 7), and u;(7) = u; —
F~'{r). Because in model (1}, by A2 (a), A(r) = B+ F {1)e,
we may interpret 4 as & = /n{b — ) fw(r) for some choice of b.
Lemma 3.1 of GIKP may be recast slightly to provide the follow-
ing uniform asymptotically quadratic approximation for V(8,1

Under conditions A.1-A.3, for any fixed €' > 0 and & € {(0,1/2),

sup{[Wa(s, 7] 4] < Cy/loglogn, € T} — 0

and
Wo(8,7) = (N{r)s(r)) HVald, 7) — Val0,7)]

- [% §DS — (Mt)"6'gn)] |

where g, = n 7Y% S s, (ui () and 4, (u) = 7 — I{u < Q).
Theorem 1 of GI established that

da(r) = Vn(Balr) - Br))fw(r) = \z) "' D™ ga + 0, (1)
where the representation holds aniformly on 7. Thus
b, = 2'DTB,
Similarly, for the restricted estimator, we have
Falr) = ( D D12¢(7) fw(r) + D1 gin/A(T) ) ‘
—§(r) feT)

where we partition g, = (g1..85,)" to conform with 8 =
(3;,85)". Now substituting back into the quadratic approxima-
tion, we may write (see, e.g., Koenker and Bassett 1982}

Ln = AV - V}/(w)
= (8'DE — 28'gn /) — (8D — 28 g, /0) + 05(1)
= h'D?h + 6,(1),

where h(r) = (D)71¢(r}/w(r) + (gzn — DD g1/ A(7).
Finally, note that

h= (D?)7¢/w + (D%) 7 7B, /2,
50 we may write
Lo =l + BQHZ/AZ + o0p(1),

where i = dw™}(D*?)7Y/%¢, and this yields the noncentrality
function

n=|lul®/3* = ¢(D*) 7 ¢/’

Proof of Theorem 2

The result follows from the argument given in the text.
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Proof of Theorem 3

Let ig = X3 — 5{2, 50 )-(% = Xq; — Kaq, and denote
Wialr) =077} Soufaulr) = (1 =7),
Woa(r) =0 " aias(r) — (1~ 7)),

and

Wn]_(f':l = n_llﬂ Z){H.(a,.é(‘r} — (1 — 'r:]]‘

where a;(7) = Hu; > F7{7)). By (5.26) of GI, we have the
uniform (on 7) representation

Waa(r) = Waalr) - XD I X (XTI X1 ) T Wt (1) + ap(1)
= Woa(7) + 0p(1).
So, integrating as for (4.2} of GIKP, we have
8, =n/? Z Saup(F(ui)) + 0p(1)

and, consequently, T, ~» xg under Hy.
Under H,, by contiguity we have the representation on 7,

S‘n, = n_]-/? zigﬁﬁ’(F(ua — H_IIQXTM_C(F(“I:}:];JL)) + Op(l}
=n! Z (Roix2: /)’ (F(ui)) f ) COF (u))

+n7H2 Z R2s0( F(ui)) + op(1).
Using conventional matrix partitioning notation,
n”t Zi%mdﬁa‘ = Gnaz — Gn12G}, Gy = (G2) 70

Integrating yields, £Sn = (G22) " A(¢, {, F), and the result then
follows by verifying the rather tedious partitioned matrix identity
(GEM.(G2) = 0.
Proof of Theorem 4

Note that with the quantile score function ¢-{(t) = 7 —
It = 1),
Snlr) = Woa(r) = Woa(r) + 0p(1)

uniformly on 7 under Hp. By lemma 2 of GI,
Woa(r) = MY?B, (1),
which proves the resalt under Hy. Under H,, write
An(7) = Vr(Bu(r) = Bi(7), ~¢(r) /).
The representation (5.135) of GJ yields
Waa(r) = (1/s(r))[(1/n) Y %asxi /o] An(T) + 0p(1)
Waa(7) + (1/s(7))(G™) 7 ((r) + 04(1),

because {1/n) > Xaixi;/a; = 0. The result then follows by
lemma 2 of GI.

Sn{7)

1l

1
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