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1 Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues

related to structural changes with unknown break dates, most of it specifically designed

for the case of a single change (for an extensive review, see Perron, 2006). The problem

of multiple structural changes has received more attention recently mostly in the context

of a single regression. Bai and Perron (1998, 2003a) provide a comprehensive treatment

of various issues: consistency of estimates of the break dates, tests for structural changes,

confidence intervals for the break dates, methods to select the number of breaks and efficient

algorithms to compute the estimates. Perron and Qu (2004) extend this analysis to the case

where arbitrary linear restrictions are imposed on the coefficients of the model. Related

contributions include Hawkins (1976) who presents a comprehensive treatment of estimation

based on a dynamic programming algorithm. Also, Liu, Wu and Zidek (1997) consider

multiple structural changes in the context of a more general threshold model and propose

an information criterion for the selection of the number of changes. Bai, Lumsdaine and

Stock (1998) consider asymptotically valid inference for the estimate of a single break date

in multivariate time series allowing stationary or integrated regressors as well as trends with

estimation carried using a quasi maximum likelihood (QML) procedure. Also, Bai (2000)

considers the consistency, rate of convergence and limiting distribution of estimated break

dates in a segmented stationary VAR model estimated again by QML when the break can

occur in the parameters of the conditional mean, the variance of the error term or both.

Kejriwal and Perron (2006a,b) provide a comprehensive treatment of issue related to testing

and inference with multiple structural changes in a single equation cointegrated model.

With respect to testing for structural change in the variance of the regression error, the

results are quite sparse. Qu and Perron (2007a) consider a multivariate system estimated

by quasi maximum likelihood which provides methods to estimate models with structural

changes in both the regression coefficients and the covariance matrix of the errors. They

provide a limit distribution theory for inference about the break dates and also consider

testing for multiple structural changes, though, in this case, their analysis is restricted to

models with Normally distributed errors and a prior that the breaks in coefficients and in

the variance occur at different dates. Horváth (1993) considers a change in the mean and

variance (occurring at the same time) of a sequence of i.i.d. random variables with moments

corresponding to those of a Normal distribution. Davis, Huang, and Yao (1995) extend the

analysis to an autoregressive process under similar conditions.
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We build on the work of Qu and Perron (2007a) to provide a comprehensive treatment of

the problem of testing jointly for structural changes in both the regression coefficients and

the variance of the errors in a single equation system involving stationary regressors, allowing

the break dates to be different or overlap. Our framework is quite general in that we allow

for general mixing-type regressors and the assumptions on the errors are quite mild. Their

distribution can be non-Normal and conditional heteroskedasticity is permitted. Extensions

to the case with serially correlated errors are also treated. We provide the required tools

to address the following testing problems, among others: a) testing for given numbers of

changes in regression coefficients and variance of the errors; b) testing for some unknown

number of changes within some pre-specified maximum; c) testing for changes in variance

(regression coefficients) allowing for a given number of changes in the regression coefficients

(variance); d) sequential procedures to estimate the number of changes present.

These testing problems are important for practical applications as witnessed by recent

interests in macroeconomics and finance where documenting structural changes in the vari-

ability of shocks to simple autoregressions or Vector Autoregressive Models has been a con-

cern; see, among others, Blanchard and Simon (2001), Herrera and Pesavento (2005), Kim

and Nelson (1999), McConnell and Perez-Quiros (2000), Sensier and van Dijk (2004) and

Stock and Watson (2002). Given the lack of proper testing procedures, a common approach

is to apply standard sup-Wald type tests (e.g., Andrews, 1993, Bai and Perron, 1998) for

changes in the mean of the absolute value of the estimated residuals; see, e.g., Herrera and

Pesavento (2005) and Stock and Watson (2002). This is a rather ad hoc procedure. For

the problem of testing for a change in variance only (imposing no change in the regression

coefficients), Deng and Perron (2006) have recently extended the CUSUM of squares test

of Brown, Durbin and Evans (1975) allowing very general conditions on the regressors and

the errors (as suggested by Inclán and Tiao (1994) for Normally distributed time series).

This test is, however, adequate only if no change in coefficient is present. As documented

by, e.g., Stock and Watson (2002), it is often the case that changes in both coefficients and

variance occur and the break dates need not be the same. A common method is to first

test for changes in the regression coefficients and conditioning on the break dates found,

then test for changes in variance. This is clearly inappropriate as in the first step the tests

suffers for severe size distortions (see Section 2). Also, neglecting changes in regression coef-

ficient when testing for changes in variance induces both size distortions and a loss of power.

Hence, what is needed is a joint approach. To do so, our testing procedures are based on

quasi likelihood ratio tests constructed using a likelihood function appropriate for identically
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and independently distributed Normal errors. We then apply corrections to these likelihood

ratio tests such that their limit distributions are free of nuisance parameters in the presence

of non-Normal distribution and conditional heteroskedasticity. We also consider extensions

that allow for serial correlation as well.

We apply our testing procedures to various macroeconomic time series studied by Stock

and Watson (2002). On the one hand, our results reinforce the prevalence of changes in both

mean, persistence and variance of the shocks in simple autoregressions. Most series have

an important reduction in variance that occurred in the 80s. For many series, however, the

evidence points to two breaks in the variance of the shocks with the feature that it increases

at the first one and decreases at the second. Hence, the so-called “great moderation” may

be qualified as a phenomenon where the high variance level of the 70s to early 80s are over

and we are back to the level of (roughly) pre-70s; sometimes this reversion is exact (e.g.,

inflation), incomplete (e.g., interest rates) or magnified (real variables). Hence, the so-called

“great-moderation” may rather be qualified as a “great-reversion”. We also present a number

of interesting results pertaining to changes in level and persistence of the series.

The paper is structured as follows. Section 2 provides some motivations which show

that commonly used procedures that do not treat the problem of changes in regression

coefficient and in variance jointly suffer from important size distortions and power losses.

Section 3 presents the class of models considered as well as the testing problems to be

addressed. Section 4 presents the quasi-likelihood tests to be used as the basis of the various

testing procedures. Section 5 discusses the main assumptions needed on the regressors and

errors, derives the relevant limit distributions under the various null hypotheses and proposes

corrected versions of the tests that have a limit distribution free of nuisance parameters.

Section 5.1 deals with the case of martingale difference errors, Section 5.2 extends the analysis

to serially correlated errors, Section 5.3 covers the case with an unknown number of breaks

under the alternative hypothesis, Section 5.4 discusses tests for an additional break in either

the regression coefficients or the variance. Section 6 provides simulation results to assess

the adequacy of the suggested procedures in terms of their finite sample size and power

and provides some guidelines for particular options. Section 7 presents a specific to general

method to estimate the number of breaks in each of the regression coefficient and the variance.

Section 8 provides empirical applications related to various macroeconomic time series for

which changes in both the mean and the variance has been a concern. Section 9 provides

brief concluding remarks and directions for future research, and a brief appendix contains

some technical derivations.
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2 Motivation

To motivate the importance of considering jointly the problem of testing for changes in the

regression coefficients and the variance of the errors, we start with some simple simulation

experiments. The data generating process (DGP) is a simple sequence of i.i.d. Normal

random variable with mean and variance that can change at a single date. To analyze the

effect of ignoring a variance break when testing for a change in the regression coefficients,

the null hypothesis is specified by

yt = μ+ et (1)

where et ∼ i.i.d. N(0, 1 + δ1I(t > T v)) with I(·), the indicator function. We consider 3
break dates, T v = {[0.25T ], [0.5T ], [0.75T ]} and variance change δ1 varying between 0 and
10 in steps of 0.05. The sample size is set to T = 100 and 5000 replications are used. The

test considered is the standard Sup-LR test (see Andrews, 1993) for a one-time change in μ

occurring at some unknown date. The size of the test is presented in Figure 1. The results

show important size distortions unless the break occurs early at T v = [0.25T ], and these are

increasing with δ1. To assess the effect on power, the DGP is

yt = μ+ δ2I(t > T c) + et (2)

with et as specified above. We consider T v = {[0.5T ], [0.75T ]}; T c = {[0.3T ]}, T = 100,

δ1 = {0, 0.5, 1, 1.5, 2, 2.5, 3} and δ2 varies between 0 and 2. The results are presented in

Figure 2, which shows that power decreases as the magnitude of the unaccounted break in

variance increases.

We now consider the effect of a change in mean on the size and power of tests for a

change in variance that do not take into account the former change. We consider two testing

procedures. One is based on the CUSUM of squares tests as originally proposed by Brown,

Durbin and Evans (1975) and advocated as a test for a change in variance by Inclán and

Tiao (1994), who showed that it is related to the likelihood ratio test for a change in variance

in a sequence of i.i.d. Normal random variables (though the equivalence is not exact in finite

samples). It is defined by

CUSQ = max
k+1≤r≤T

√
T

¯̄̄̄
S
(r)
T −

r − k

T − k

¯̄̄̄
where S(r)T = (

Pr
t=k+1 ev2t )/(PT

t=k+1 ev2t ), with evt the recursive residuals. Its limit distribution
under the null hypothesis is the supremum (over [0, 1]) of a Brownian Bridge process, for the
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DGP considered here. To analyze the size of the test, DGP (2) with δ1 = 0 is used and we

set T c = {[.25T ], [.5T ], [.75T ]} with δ2 varying between 0 and 10. The results are presented

in Figure 3 which show that in all cases the size of the test increases to one rapidly as the

magnitude of the change in mean increases. This is not surprising in view of the fact that

the CUSQ test has power against a change in the regression coefficients as originally argued

by Brown, Durbin and Evans (1975). For power, the DGP used is again (2) with δ1 varying

between 0 and 15 and δ2 = {0, 1, 1.5, 2, 2.5, 3, 3.5}. The results are presented in Figure 4,
which show that a change in mean that is unaccounted for can increase the power of the

CUSQ test. This results is, however, of little help given the large size distortions. Finally,

we consider the two steps method used by Herrera and Pesavento (2005) and Stock and

Watson (2002), among others, which applies a test for a change in the mean of the absolute

value of the estimated residuals. Again, DGP (2) is used to assess the size (δ1 = 0) and

power properties. For size, δ2 varies between 0 and 10 and we set T c = {[.25T ], [.5T ], [.75T ]},
while for power δ2 varies between 0 and 3.5 and we consider two sets of break dates, namely

{T c = [.5T ], T v = [.3T ]} and {T c = [.75T ], T v = [.3T ]}. The results are presented in Figures
5 and 6. They show that unless the unaccounted for change in mean is at mid-sample, the

test suffers from serious size distortions, which increase as the magnitude of the change in

mean increases. For the case of a break in mean at mid-sample, which suffers from no size

distortions, Figure 6 shows that power decreases as the magnitude of the coefficient break

increases.

While the setup considered is quite simple, it shows how inference can be misleading

when changes in the coefficients of the conditional mean and changes in the variance of the

errors are not analyzed jointly. The rest of the paper provides the necessary tools to do so.

3 Model and testing problems

We start with a description of the most general specification of the model considered where

multiple breaks occur in both the coefficients of the conditional mean and the variance of

the errors, at possibly different times. This will also allow us to set up the notation used

throughout the paper.

The main framework of analysis can be described by the following multiple linear regres-

sion with m breaks (or m+ 1 regimes) in the conditional mean equation:

yt = x0tβ + z0tδj + ut, t = T c
j−1 + 1, ..., T

c
j , (3)

for j = 1, ...,m + 1. In this model, yt is the observed dependent variable at time t; both
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xt (p × 1) and zt (q × 1) are vectors of covariates and β and δj (j = 1, ...,m + 1) are the

corresponding vectors of coefficients; ut is the disturbance at time t. The indices (T c
1 , ..., T

c
m),

or the break points, are explicitly treated as unknown (the convention that T c
0 = 0 and

T c
m+1 = T is used). This is a partial structural change model since the parameter vector β is

not subject to shifts and is estimated using the entire sample. When p = 0, we obtain a pure

structural change model where all the model’s coefficients are subject to change. Note that

using a partial structural change model where only some coefficients are allowed to change

can be beneficial both in terms of obtaining more precise estimates and more powerful tests.

We also allow for n breaks (or n + 1 regimes) for the variance of the errors occurring at

unknown dates (T v
1 , ..., T

v
n). Accordingly, the error term ut has zero mean and variance σ2i

for T v
i−1 + 1 ≤ t ≤ T v

i (i = 1, ..., n + 1), where again we use the convention that T v
0 = 0

and T v
n+1 = T . We allow the breaks in the variance and in the regression coefficients to

happen at different times, hence the m-vector (T c
1 , ..., T

c
m) and the n-vector (T

v

1 , ..., T
v
n) can

have all distinct elements or they can overlap partly or completely. We let K denote the

total number of break dates and max[m,n] ≤ K ≤ m + n. When the the breaks overlap

completely, m = n = K.

The multiple linear regression system (3) may be expressed in matrix form as

Y = Xβ + Z̄δ + U,

where Y = (y1, ..., yT )
0, X = (x1, ..., xT )

0, U = (u1, ..., uT )
0, δ = (δ01, δ

0
2, ..., δ

0
m+1)

0, and Z̄ is

the matrix which diagonally partitions Z at (T c
1 , ..., T

c
m), i.e., Z̄ = diag(Z1, ..., Zm+1) with

Zi = (zT ci−1+1, ..., zT ci )
0. We denote the true value of a parameter with a 0 superscript. In

particular, δ0 = (δ0
0
1 , ..., δ

00
m+1)

0 and (T c0
1 , ..., T c0

m ) are used to denote, respectively, the true

values of the parameters δ and the true break dates in the regression coefficients. The matrix

Z̄c0 is the one which diagonally partitions Z at (T c0
1 , ..., T c0

m ). Hence, in its most general form,

the data-generating process is

Y = Xβ0 + Z̄0δ0 + U (4)

with E(UU 0) = Ω0, where the diagonal elements of Ω0 are σ2i0 for T
v0
i−1 + 1 ≤ t ≤ T v0

i

(i = 1, ..., n + 1). We also consider cases with serial correlation in the errors for which the

off-diagonal elements of Ω0 need not be 0.

This model is a special case of the class of models considered by Qu and Perron (2007a).

The method of estimation considered is quasi maximum likelihood (QML) assuming serially

uncorrelated Gaussian errors. They prove consistency of the estimates of the break fractions

(λ01, ..., λ
0
K) ≡ (T 01 /T, ..., T 0K/T ), where T 0i (i = 1, ...,K) denotes the union of the elements
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of (T c0
1 , ..., T c0

m ) and (T
v0
1 , ..., T v0

n ). This is done under general conditions on the regressors

and the errors. Substantial heterogeneity in the distributions of the regressors is allowed

across regimes, though unit root processes are not permitted. The series ztut and ut are

assumed to be short memory processes having bounded forth moments. Otherwise, the

conditions are mild in the sense that they allow for substantial conditional heteroskedasticity

and autocorrelation. They also derive the limit distribution of the estimates of the break

dates.

The testing problems to be considered are the following:

• TP-1: H0 : {m = n = 0} versus H1 : {m = 0, n = na};

• TP-2: H0 : {m = ma, n = 0} versus H1 : {m = ma, n = na};

• TP-3: H0 : {m = 0, n = na} versus H1 : {m = ma, n = na};

• TP-4: H0 : {m = n = 0} versus H1 : {m = ma, n = na},

where ma and na are some positive numbers selected a priori. We shall also consider test-

ing problems where the alternatives specify some unknown numbers of breaks, up to some

maximum. These are:

• TP-5: H0 : {m = n = 0} versus H1 : {m = 0, 1 ≤ n ≤ N};

• TP-6: H0 : {m = ma, n = 0} versus H1 : {m = ma, 1 ≤ n ≤ N};

• TP-7: H0 : {m = 0, n = na} versus H1 : {1 ≤ m ≤M , n = na};

• TP-8: H0 : {m = n = 0} versus H1 : {1 ≤ m ≤M , 1 ≤ n ≤ N}.

We shall also be concerned with the following testing problems:

• TP-9: {m = ma, n = na} versus H1 : {m = ma + 1, n = na};

• TP-10: {m = ma, n = na} versus H1 : {m = ma, n = na + 1},

where ma and na non-negative integers. These are useful to assess the adequacy of a model

with a particular number of breaks by looking at whether including one more break is

warranted. In Section 7, we also consider sequential testing procedures that allow estimating

the number of breaks in both the conditional mean regression and the variance of the errors.
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4 The quasi-likelihood ratio tests

In this section we consider the likelihood ratio tests obtained assuming Normally distributed

and serially uncorrelated errors, for the testing problems TP-1 to TP-4. We derive their

limit distributions, which in general, are not free of nuisance parameters. We then propose,

in Section 5, modifications whose asymptotic distributions are free of nuisance parameters.

Results for the testing problems TP-5 to TP-8 follow as straightforward corollaries and are

discussed in Section 5.3.

Consider TP-1 where one specifies no change in the regression coefficients (m = q = 0)

but tests for a given number na of changes in the variance of the errors. Under the null

hypothesis, the log-likelihood function is given by

log eLT = −T
2
(log 2π + 1)− T

2
log eσ2 (5)

where

eσ2 =
1

T

TX
t=1

(yt − x0teβ)2
eβ = (

TX
t=1

xtx
0
t)
−1(

TX
t=1

xtyt)

Under the alternative hypothesis, we estimate the model using the Quasi-Maximum likeli-

hood estimation method (QMLE). For a given partition {T v
1 , ..., T

v
n}, the log-likelihood value

is given by

log L̂T (T
v
1 , ..., T

v
n) = −

T

2
(log 2π + 1)−

na+1X
i=1

T v
i − T v

i−1
2

log σ̂2i , (6)

where the QMLE jointly solve the system

β̂ =

⎛⎝na+1X
i=1

TviX
t=T vi−1+1

xtx
0
t

σ̂2i

⎞⎠−1⎛⎝na+1X
i=1

T viX
t=T vi−1+1

xtyt

σ̂2i

⎞⎠
σ̂2i =

1

T v
i − T v

i−1

T viX
t=T vi−1+1

(yt − x0tβ̂)
2

for i = 1, ..., na + 1. Hence, the Sup-Likelihood ratio test considered is

supLR1,T (na, ε|m = n = 0) = sup
(λv1 ,...,λvna)∈Λv,ε

2
h
log L̂T

¡
T v
1 , ..., T

v
na

¢− log eLT

i
= 2

h
log L̂T (T̂

v
1 , ..., T̂

v
na)− log eLT

i
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where the estimates (T̂ v
1 , ..., T̂

v
na) are the QMLE obtained by imposing the restriction that

there is no structural change in the coefficients and

Λv,ε=
©¡
λv1, ..., λ

v
na

¢
;
¯̄
λvi+1 − λvi

¯̄ ≥ ε (i = 1, ..., na − 1), λv1 ≥ ε, λvna ≤ 1− ε
ª
.

The parameter ε acts as a truncation which imposes a minimal length for each segment and

will affect the limiting distribution of the test.

For the testing problem TP-2, there are ma breaks in the regression coefficients under

both the null and alternative hypotheses, so that the test pertains to assess whether there

are 0 or na breaks in variance. For a given partition {T c
1 , ..., T

c
ma
}, the likelihood function

under the null hypothesis is:

log eLT (T
c
1 , ..., T

c
ma
) = −T

2
(log 2π + 1)− T

2
log eσ2

where

eσ2 = 1

T

TX
t=1

(yt − x0teβ − z0teδj)2
and

eβ = (X 0MZ̄X)
−1X 0MZ̄Yeδj = (Z 0jZj)

−1Zj(Yj −Xj
eβ)

where MZ̄ = I − Z̄
¡
Z̄ 0Z̄

¢−1
Z̄ 0, Z̄ = diag (Z1, ..., Zma+1), and Zj = (zT cj−1+1, ..., zT cj )

0, Yj =

(yT cj−1+1, ..., yT cj )
0, Xj = (xT cj−1+1, ..., xT cj )

0 for T c
j−1 < t ≤ T c

j (j = 1, ...,ma + 1). The log-

likelihood value under the alternative hypothesis is, for given partitions {T c
1 , ..., T

c
ma
} and

{T v
1 , ..., T

v
na},

log L̂T

¡
T c
1 , ..., T

c
ma
;T v
1 , ..., T

v
na

¢
= −T

2
(log 2π + 1)−

na+1X
i=1

T v
i − T v

i−1
2

log σ̂2i , (7)

where the QMLE solves the following equations

σ̂2i =
1

T v
i − T v

i−1

T viX
t=T vi−1+1

(yt − x0tβ̂ − z0tδ̂t,j)
2

for i = 1, ..., na + 1, and

β̂ = (X 0MZ̄σX)
−1X 0MZ̄σY
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where MZ̄σ = I − Z̄σ

¡
Z̄ 0σZ̄σ

¢−1
Z̄ 0σ with Z̄σ = diag(Zσ

1 , ..., Z
σ
ma+1), Z

σ
j = (zσT cj−1+1, ..., z

σ
T cj
)0,

and zσt = (zt/σ̂i), for T
v
i−1 < t ≤ T v

i (i = 1, ..., na + 1). Using the same notation,

δ̂t,j = (Z
σ0
j Z

σ
j )
−1Zσ0

j (Y
σ
j −Xσ

j β̂)

for T c
j−1 ≤ t ≤ T c

j , where Y
σ
j = (yσT cj−1+1, ..., y

σ
T cj
)0 and Xσ

j = (xσT cj−1+1, ..., x
σ
T cj
)0 with xσt =

(xt/σ̂i) and yσt = (yt/σ̂i). Hence, the quasi Sup-likelihood ratio test is

supLR2,T (ma, na, ε|n = 0,ma)

= 2

⎡⎣ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

log L̂T (T
c
1 , ..., T

c
ma
;T v
1 , ..., T

v
na)− sup

(λc1,...,λcma)∈Λc,ε
log eLT (T

c
1 , ..., T

c
ma
)

⎤⎦
= 2

h
log L̂T (eT c

1 , ..., eT c
ma
; eT v

1 , ..., eT v
na)− log eLT (T̂

c
1 , ..., T̂

c
ma
)
i

where

Λc,ε =
©
(λc1, ..., λ

c
m) ;

¯̄
λcj+1 − λcj

¯̄ ≥ ε (j = 1, ...,ma − 1), λc1 ≥ ε, λcma
≤ 1− ε

ª
and

Λε = {(λc1, ..., λcm, λv1, ..., λvn) ; for (λ1, ..., λK) = (λc1, ..., λcm) ∪ (λv1, ..., λvn) (8)

|λj+1 − λj| ≥ ε (j = 1, ..., K − 1), λ1 ≥ ε, λK ≤ 1− ε}

Note that we denote the estimates of the break dates in coefficients and variance by a “∼”
when these are obatined jointly, as opposed to the estimates which are obtained separately

and denoted by a “ˆ”.

Remark 1 The set Λε which defines the possible values of the break fractions in coefficients

(λc1, ..., λ
c
m) and in variance (λ

v
1, ..., λ

v
m) allows them to have some (or all) common elements

or be completely different. What is important is that each break fraction be separated by a

non-zero value ε. This does complicate inference since many cases need to be considered. To

illustrate, consider the case with ma = na = 1. We can have K = 1 in which case it is a one

break model with both the coefficients and the variance of the errors changing at the same

break date. On the other hand, if K = 2, the break date for the change in coefficients is

different from that for the change in variance. This leads to two additional possible cases to

consider: a) λc1 ≤ λv1−ε (the break in the coefficients occurs before the break in the variance),
b) λc1 ≥ λv1 + ε (the break in the coefficients occurs after the break in the variance). The

maximized likelihood function for these two cases can easily be evaluated using the algorithm
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of Qu and Perron (2007a) since it permits the imposition of restrictions. For example, if

λc1 ≤ λv1 − ε, we have a two break model and the restrictions needed are that the variance

of the errors in the first and second regimes is identical, and the regression coefficients are

identical in the second and third regimes. Hence, for the case ma = na = 1, there are three

maximized likelihood values to construct and the test corresponds to the maximal value over

these three cases. When ma or na are greater than one, more cases need to be considered,

but the principle remains the same.

For the testing problem TP-3, the null hypothesis specifies na breaks in variance and zero

break in the regression coefficients so that, for a given partition {T v
1 , ..., T

v
n}, the likelihood

function is given by

log eLT

¡
T v
1 , ..., T

v
na

¢
= −T

2
(log 2π + 1)−

na+1X
i=1

T v
i − T v

i−1
2

log eσ2i ,
where

eσ2i = 1

T v
i − T v

i−1

TviX
t=T vi−1+1

(yt − x0teβ − z0teδ)2
for i = 1, ..., na + 1, with

(eβ0,eδ0)0 = (W σ0W σ)−1W σ0Y σ,

where W σ = (wσ
1 , ..., w

σ
T )
0 with wσ

t = (xσ0t , z
σ0
t )

0. Under the alternative hypothesis, there

are ma breaks in the regression coefficients and na breaks in variance so that the likelihood

function is given by (7). Hence, the Sup-Likelihood ratio test is

supLR3,T (ma, na, ε|m = 0, na)

= 2

⎡⎣ sup
(λc1,...,λcma

;λv1 ,...,λ
v
na)∈Λε

log L̂T (T
c
1 , ..., T

c
ma
;T v
1 , ..., T

v
na)− sup

(λv1 ,...,λvna)∈Λv,ε
log eLT (T

v
1 , ..., T

v
na)

⎤⎦
= 2

h
log L̂T (eT c

1 , ..., eT c
ma
; eT v

1 , ..., eT v
na)− log eLT (T̂

v
1 , ..., T̂

v
na)
i

For the testing problem TP-4, the null hypothesis specifies no break under both the null

and alternative hypotheses and, hence, the log-likelihood value under the null hypothesis is

given by log eLT as specified by (5). The alternative hypothesis specifies ma breaks in the

regression coefficients and na breaks in the variance of the errors and the log likelihood value

11



is given by (7). Hence, the Sup-Likelihood ratio test is then

supLR4,T (ma, na, ε|n = m = 0)

= 2

⎡⎣ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

log L̂T

¡
T c
1 , ..., T

c
ma
;T v
1 , ..., T

v
na

¢− log eLT

⎤⎦
= 2

h
log L̂T (eT c

1 , ..., eT c
ma
; eT v

1 , ..., eT v
na)− log eLT

i
(9)

5 The limiting distributions of the tests

We now consider the limit distribution of the tests. We start with the case where the errors

are martingale differences in Section 5.1 and consider extensions to serially correlated errors

in Section 5.2.

5.1 The case with martingale difference errors.

Since some testing problems imply a given non-zero number of breaks under the null hy-

pothesis, we need some conditions to ensure that the estimates of the break fractions are

consistent at a fast enough rate and that the estimates of the parameters are also consistent.

This problem was analyzed in Qu and Perron (2007a) and we simply use the same set of

assumptions. If breaks are allowed in the regression coefficients under both the null and

alternative hypotheses, we specify the following conditions:

• Assumption A1: The conditions stated in Assumptions A1-A4 and A6-A8 of Qu and
Perron (2007a) are assumed to hold.

When the null hypothesis specifies no change in the regression coefficients, we shall as-

sume, with wt = (x
0
t, z

0
t)
0:

• Assumption A2: T−1P[Ts]
t=1 wtw

0
t →p sQ, uniformly in s ∈ [0, 1], with Q some positive

definite matrix.

Assumption A2 rules out trending regressors and imposes the requirement that the limit

moment matrix of the regressors be homogeneous throughout the sample. Hence, we avoid

the case where the marginal distribution of the regressors may change while the coefficients

do not (see, e.g., Hansen, 2000). This follows from our basic premise that regimes are defined

by changes in some coefficients. When changes in the variance of the errors are allowed under

both the null and alternative hypotheses, we specify:

12



• Assumption A3: The conditions stated in Assumption A5 of Qu and Perron (2007a)
are assumed to hold with the addition that the errors {ut} form an array of martingale
differences relative to Ft = σ-field {..., zt−1, zt, ..., xt−1, xt, ..., ut−2, ut−1}.

When the null hypothesis imposes no changes in variance, we shall need:

• Assumption A4: The errors {ut} form an array of martingale differences relative to

Ft = σ-field {..., zt−1, zt, ..., xt−1, xt, ..., ut−2, ut−1}, and, additionally, E (u2t ) = σ20 for

all t and T−1/2
P[Ts]

t=1 ztut ⇒ σQ1/2Wq (s) , where Wq (s) is a q-vector of independent

Wiener processes. Also, T−1/2
P[Ts]

t=1(u
2
t/σ

2 − 1) ⇒ ψW (s) where W (s) is a Wiener

process independent of Wq(s) and ψ = limT→∞ var(T−1/2
PT

t=1(u
2
t/σ

2)− 1).

Assumption A4 rules out instability in the error process and states that a basic functional

central limit theorem holds for the weighted partial sums of the errors and their squares.

Note that A4 assumes no serial correlation in the errors ut. This will be relaxed later.

The limiting distributions, under the relevant null hypothesis, of the likelihood ratio

tests for the testing problems TP-1 to TP-4 are stated in the following Theorem, where “⇒”
denotes weak convergence under the Skorohod topology and || · || is the Eucledian norm.

Theorem 1 Under the relevant null hypothesis, we have, as T →∞,
a) For TP-1, under A2 and A4:

supLR1,T (na, ε|m = n = 0)⇒ sup
(λv1 ,...,λvna)∈Λv,�

ψ

2

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
b) For TP-2, under A1 and A4:

supLR2,T (ma, na, ε|n = 0,ma) ⇒ sup
(λv1 ,...,λvna)∈Λcv,�

ψ

2

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
≤ sup

(λv1 ,...,λvna)∈Λv,�

ψ

2

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
where

Λc
v,ε =

©
(λv1, ..., λ

v
n) ; for (λ1, ..., λK) = (λ

0c
1 , ..., λ

0c
m) ∪ (λv1, ..., λvn)

|λj+1 − λj| ≥ ε (j = 1, ...,K − 1), λ1 ≥ ε, λK ≤ 1− ε}
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and

Λv,ε=
©¡
λv1, ..., λ

v
na

¢
;
¯̄
λvi+1 − λvi

¯̄ ≥ ε (i = 1, ..., na − 1), λv1 ≥ ε, λvna ≤ 1− ε
ª
.

c) For TP-3, under A1-A3:

supLR3,T (ma, na, ε|m = 0, na) ⇒ sup
(λc1,...,λcma)∈Λvc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)

≤ sup
(λc1,...,λcma)∈Λc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)

(10)

where

Λv
c,ε =

©
(λc1, ..., λ

c
m) ; for (λ1, ..., λK) = (λ

c
1, ..., λ

c
m) ∪ (λ0v1 , ..., λ0vn )

|λj+1 − λj| ≥ ε (j = 1, ..., K − 1), λ1 ≥ ε, λK ≤ 1− ε}

and

Λc,ε =
©
(λc1, ..., λ

c
m) ;

¯̄
λcj+1 − λcj

¯̄ ≥ ε (j = 1, ...,ma − 1), λc1 ≥ ε, λcma
≤ 1− ε

ª
d) For TP-4, under A2 and A4:

supLR4,T (ma, na, ε|n = m = 0)⇒ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

⎡⎢⎣
Pma

j=1

||λcjWq(λ
c
j+1)−λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λcj+1−λcj)

+ψ
2

Pna
i=1

(λviW(λvi+1)−λvi+1W (λvi ))
2

λvi+1λ
v
i (λvi+1−λvi )

⎤⎥⎦
where

Λε = {(λc1, ..., λcm, λv1, ..., λvn) ; for (λ1, ..., λK) = (λc1, ..., λcm) ∪ (λv1, ..., λvn)
|λj+1 − λj| ≥ ε (j = 1, ...,K − 1), λ1 ≥ ε, λK ≤ 1− ε}

Remark 2 For the testing problems TP-2 and TP-3, the limit distributions depend on the
true unknown value of the relevant break fractions corresponding to the break dates allowed

under both the null and alternative hypotheses. The results, however, indicate that these

distributions can be bounded by limit random variables which do not depend on such unknown

values. This follows since Λc
v,ε ⊆ Λv,ε and Λv

c,ε ⊆ Λc,ε. Hence, a conservative testing procedure

is possible. As we shall see, the test is barely conservative if the trimming parameter ε is

small, though as ε gets large (e.g. 0.20) the test will be somewhat undersized.
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The proof of this Theorem is given in the Appendix. For the testing problem TP-3, the

bound is the same as the limit distribution in Bai and Perron (1998). Hence, the critical

values provided by Bai and Perron (1998, 2003b) can be used. For the testing problems TP-1

and TP-2, the same limit distribution (for a one parameter change) applies except for the

scaling factor (ψ/2). This quantity can nevertheless still be consistently estimated. Consider

the following class of estimates:

ψ̂ =
1

T

T−1X
j=−(T−1)

ω (j,m)
TX

t=|j|+1
η̂tη̂t−j (11)

where η̂t = (û
2
t/σ̂

2)−1 where σ̂2 = T−1
PT

t=1 û
2
t with ût the residuals under the null hypothe-

ses. Here w(j,m) is a weight function and m some bandwidth which can be selected using

one of the many alternative ways that have been proposed; see, e.g., Andrews (1991). The

estimate ψ̂ will be consistent under some conditions on the choice of w(j,m) and the rate of

increase ofm as a function of T . Following Kejriwal and Perron (2006a), we use the residuals

under the null hypothesis to construct ψ̂ but the residuals under the alternative hypothesis

to select the bandwidth parameter m (see also Kejriwal, 2007). Simulations showed that

using the residuals under the alternative hypothesis to select m and construct ψ̂ leads to

tests with important size distortions. Using the residuals under the null for both leads to

conservative and less powerful tests. Using the hybrid method permits, as we shall see, to

control the exact size in small samples without significant loss of power. In our simulations

and empirical applications, we use the Quadratic Spectral kernel and to select m we adopt

the method suggested by Andrews (1991) with an AR(1) approximation.

Remark 3 If the errors are i.i.d., ψ = μ4/σ
4− 1, which can be consistently estimated using

ψ̂ = μ̂4/σ̂
4−1, where σ̂2 = T−1

PT
t=1 û

2
t and μ̂4 = T−1

PT
t=1 û

4
t with ût the residuals under the

null or alternative hypotheses. Also, if the errors are Normal, ψ = 2 so that no adjustment

is necessary, a case that was covered by Qu and Perron (2007a). Since these cases are of less

relevance in practical applications, we shall only consider a correction involving ψ̂ as defined

by (11). But it is useful to note that a simpler correction is available if the i.i.d. assumption

is reasonable.
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We then have the following corrected statistic with a nuisance parameter free limit dis-

tribution:

supLR∗1,T = (2/ψ̂) supLR1,T ⇒ sup
(λv1 ,...,λvna)∈Λv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢ (12)

supLR∗2,T = (2/ψ̂) supLR2,T ⇒ sup
(λv1 ,...,λvna)∈Λcv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
≤ sup

(λv1 ,...,λvna)∈Λv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
For the testing problem TP-4, it is possible to obtain a transformation that has a limit

distribution free of nuisance parameters but the procedure is more involved. It is given by

supLR∗4,T = supLR4,T −
ψ̂ − 2
ψ̂

LRv (13)

where LRv is the likelihood ratio test for no break in variance versus na breaks evaluated using

the estimates {eT v
1 , ..., eT v

na} obtained by maximizing the likelihood function jointly allowing
for ma breaks in coefficients, i.e.,

LRv = 2
h
log L̂T (eT v

1 , ..., eT v
na)− log eLT

i
where log L̂T (·) and log eLT are defined by (6) and (5), respectively. Note that LRv is not

equivalent to LR1,T (na, ε|m = n = 0) which is based on the estimates of the break dates

for the changes in variance assuming no break in coefficients. Since {eT v
1 /T, ..., eT v

na/T} are
consistent estimates of the break fractions whether we have ma breaks in coefficients or not,

we deduce that

LRv ⇒ ψ

2
sup

(λv1 ,...,λvna)∈Λε

naX
i=1

(λviW
¡
λvi+1

¢− λvi+1W (λvi ))
2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
and, hence,

supLR∗4,T ⇒ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

⎡⎢⎣
Pma

j=1

||λcjWq(λ
c
j+1)−λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λcj+1−λcj)

+
Pna

i=1

(λviW(λvi+1)−λvi+1W (λvi ))
2

λvi+1λ
v
i (λvi+1−λvi )

⎤⎥⎦ ≡ sup LR∗4 (14)

The limit distribution (14) is new. To obtain the relevant critical values we proceeded as

follows. We first simulate a dependent variable and q regressors as independent N(0, 1)
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random variables. This is without loss of generality since the limit distribution does not

depend on the distribution of the regressors and using Normally distributed series will ensure

a closer correspondence with the asymptotic distribution for a given sample size, which we

set to T = 500. The algorithm of Qu and Perron (2007a) imposing appropriate restrictions

is then used to obtain the estimates of the ma break dates in coefficients and the na break

dates in variance using the trimming specified by Λ�. We then simulate a q × 1 vector
of independent Wiener processes Wq+1(·) as partial sums of independent N(0, 1) random
variables, again with T = 500, and evaluate the quantity

maX
j=1

||λcjWq

¡
λcj+1

¢− λcj+1Wq

¡
λcj
¢ ||2

λcj+1λ
c
j

¡
λcj+1 − λcj

¢ +
naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
whereWq(·) contains the first q elements of the vectorWq+1(·) andW (·) is the q+1th element
of the simulated vectorWq+1(·). This is repeated 2,000 times to obtain the relevant quantiles
corresponding to the distribution of the sum of the two terms. The critical values for tests

of size 1%, 2.5%, 5% and 10% are presented in Table 1 for q between 1 and 5 and ε = 0.1,

0.15, 0.20 and 0.25. For ε = 0.1, 0.15, 0.2, ma = 1, 2 and na = 1, 2. For ε = 0.25,ma = 1,

and na = 1 given that ε = 0.25 imposes a maximal number of 2 breaks.

5.2 Extensions to serially correlated errors

We now consider the case where the errors ut can be serially correlated. To that effect

Assumptions A3 and A4 are replaced by:

• Assumption A3∗: The conditions stated in Assumption A5 of Qu and Perron (2007a)
are assumed to hold.

and when the null hypothesis imposes no changes in variance, we shall need:

• Assumption A4∗: E (u2t ) = σ20 for all t and T−1/2
P[Ts]

t=1 ztut ⇒ σQ1/2Wq (s) , where

Wq (s) is a q-vector of independent Wiener processes. Also, T−1/2
P[Ts]

t=1(u
2
t/σ

2 − 1)⇒
ψW (s) where W (s) is a Wiener process independent of Wq(s) and

ψ = lim
T→∞

var(T−1/2
TX
t=1

(u2t/σ
2)− 1).

For the testing problems TP-1 and TP-2, the results are the same and the sup LR∗1,T and

sup LR∗2,T are statistics that will be asymptotically invariant to non-Normal errors, serial
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correlation and conditional heteroskedasticity so that the limit distribution (12) still applies.

For the testing problems TP-3 and TP-4, things are more complex. Consider first TP-3.

When the errors ut are serially correlated, the likelihood ratio type tests for changes in the

coefficients of the conditional mean depend on nuisance parameters and would be hard to

implement in practice. In such a case, structural changes in the regression coefficients can

still be tested using the following Wald type statistics taking into account the presence of

serial correlation: sup(λc1,...,λcma)∈Λε F3,T (ma, na, ε|m = 0, na), where

F3,T (ma, na, ε|m = 0, na) =
(T − (ma + 1) q − p)

maq
δ̂
0
R0
³
RV̂ (δ̂)R0

´−1
Rδ̂ (15)

with δ̂ = (δ01, ..., δ
0
ma+1)

0 is the quasi-maximum likelihood estimate of the coefficients that

are subject to change, under a given partition of the sample, R is the conventional ma-

trix such that (Rδ)0 =
¡
δ01 − δ02, ..., δ

0
ma
− δ0ma+1

¢
and V̂ (δ̂) is an estimate of the variance

covariance matrix of δ̂ that is robust to serial correlation and heteroskedasticity, i.e, a con-

sistent estimate of V (δ̂) = plimT→∞ T
¡
Z̄∗0σ Z̄

∗
σ

¢−1
ΩZ̄∗σ

¡
Z̄∗0σ Z̄

∗
σ

¢−1
, where Z̄∗σ =MXσZ̄σ, ΩZ̄∗σ =

E(Z̄∗0σ U
∗
bU

∗0
b Z̄

∗
σ), U

∗
b =MXσUσ,MXσ = IT−Xσ(X

0
σXσ)

−1X 0
σ, with Z̄σ = diag

¡
Zσ
1 , ..., Z

σ
ma+1

¢
,

Zσ
j = (z

σ
T cj−1+1

, ..., zσT cj )
0, Uσ = (u

σ
1 , ..., u

σ
T )
0 , zσt = (zt/σi) and uσt = (ut/σi), for T

v0
i−1 < t ≤ T v0

i

(i = 1, ..., na + 1). Under A2, A3∗ and additional assumptions under which a consistent esti-

mate of V (δ̂) can be obtained using kernel based methods as in Andrews (1991), the limiting

distribution of supF3,T (ma, na, ε|m = 0, na) is the same as in the case with martingale dif-

ference errors, i.e, as stated in (10). In practice, the computation of the above tests could be

very involved, especially if a data dependent method is used to construct the robust asymp-

totic covariance, V̂ (δ̂). Following Bai and Perron (1998), we suggest first to use the dynamic

programming algorithm to get the break points corresponding to the global maximization

of the likelihood function defined by (7), then plug the estimates into (15) to construct the

test. This will not affect the consistency of the test since the break fractions are consistently

estimated.

For the testing problem TP-4, things are more complex. We shall adopt a quasi Wald

testing procedure. Note first that the information matrix is block diagonal with respect to

δ and σ2, hence the test will involve one component for changes in δ and one component for

changes in σ2. The first is the same as discussed above, namely supF3,T as defined by (15),

except that one can use zt instead of zσt since the null hypothesis specifies no break in variance.

The difficulty is with the second component. TheWald test for the equality in variance across

regime is asymptotically different from the LR test even with martingale difference errors. In

fact, its limit distribution is quite complex and would necessitate additional tables of critical
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values. A compromise that is simple and yet still leads to a consistent test is to sum the

individuals Wald tests for each successive pairs of regimes. This leads to the component:

supF σ
T = ψ̂

−1 naX
i=1

(σ̂2i+1 − σ̂2i )
2

Ã
σ̂4i+1eλvi+1 − eλvi − σ̂4ieλvi − eλvi−1

!−1

where σ̂2i = (eT v
i − eT v

i−1)
−1PT vi

T vi−1+1
û2t and the estimates are constructed by maximizing the

likelihood function (7) subject to the restrictions imposed by the set Λε The test statistic

suggested is then

supF4,T (ma, na, ε|m = 0, na = 0) = supF3,T + supF
σ
T

It is easy to show that, under A2 and A4∗, the limit distribution of supF4,T is the same as

the modified LR test in the case of martingale difference errors, i.e., given by the random

variable (14).

5.3 A double maximum test

The tests discussed above need the prior information of the specification of the alternative

hypothesis, i.e., the number of breaks in regression parameters and in the variance of the

errors. However, in practice, researchers may lack such information, hence the need for the

testing problems TP-5 to TP-8. Bai and Perron (1998) proposed so-called double maximum

tests to solve this problem in a model with only breaks in the parameters. They are tests

of no structural break against an unknown number of breaks given some upper bound. Bai

and Perron (1998) suggested two versions of such tests. The first is an equal-weight version

labelled UDmax. It can be given a Bayesian interpretation in which the prior assigns equal

weights to the possible number of changes. The second test applies weights to the individual

tests such that the marginal p-values are equal across values of m and n and is denoted

WDmax. Bai and Perron (2006) showed via simulations that the two versions have similar

finite sample properties. Hence, we shall only consider the UDmax test given that it is

simpler to construct.

The Double Maximum test can play a significant role in testing for structural changes and

it is arguably the most useful tests to apply when trying to determine if structural changes

are present. While the test for one break is consistent against alternatives involving multiple

changes, its power in finite samples can sometimes be poor. First, there are types of multiple

structural changes that are difficult to detect with a test for a single change (for example,
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two breaks with the first and third regimes the same). Second, tests for a particular number

of changes may have non monotonic power when the number of changes is greater than

specified. Third, the simulations of Bai and Perron (2006) show, in the context of testing for

changes in the regression coefficients, that the power of the double maximum tests is almost

as high as the best power that can be achieved using the test that accounts for the correct

number of breaks. All these elements strongly point to their usefulness.

For each testing problem, the tests and their limit distributions are presented in the

following Theorem.

Theorem 2 Under the relevant null hypothesis, we have, as T →∞,
a) For TP-5, under A2 and either A4 or A4∗ :

UDmaxLR1,T = max
1≤na≤N

supLR∗1,T (na, ε|m = n = 0)

⇒ max
1≤na≤N

sup
(λv1 ,...,λvna)∈Λv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
b) For TP-6, under A1 and either A4 or A4∗:

UDmaxLR2,T = max
1≤na≤N

supLR∗2,T (ma, na, ε|n = 0,ma)

⇒ max
1≤na≤N

sup
(λv1 ,...,λvna)∈Λcv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
≤ max

1≤na≤N
sup

(λv1 ,...,λvna)∈Λv,�

naX
i=1

¡
λviW

¡
λvi+1

¢− λvi+1W (λvi )
¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢
c) For TP-7, under A1-A3:

UDmaxLR3,T = max
1≤ma≤M

supLR3,T (ma, na, ε|m = 0, na)

⇒ max
1≤ma≤M

sup
(λc1,...,λcma)∈Λvc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)

≤ max
1≤ma≤M

sup
(λc1,...,λcma)∈Λc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)
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d) For TP-8, under A2 and A4:

UDmaxLR4,T = max
1≤na≤N

max
1≤ma≤M

supLR∗4,T (ma, na, ε|n = m = 0)

⇒ max
1≤na≤N

max
1≤ma≤M

sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

⎡⎢⎣
Pma

j=1

||λcjWq(λ
c
j+1)−λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λcj+1−λcj)

+
Pna

i=1

(λviW(λvi+1)−λvi+1W (λvi ))
2

λvi+1λ
v
i (λvi+1−λvi )

⎤⎥⎦
For TP-5 to TP-7, the critical values of the limit distributions are available from Bai

and Perron (1998, 2003b) for N or M equal to 5. Note that for the testing problems TP-5

and TP-6, the results are valid whether the errors are martingale differences or whether

serial correlation is allowed. This is not the case for TP-7 and TP-8 for the same reasons as

discussed above that the likelihood ratio tests are not applicable when the errors are serially

correlated. In this case, we consider the maximum of the Wald-type test and the results are

presented in the following Theorem.

Theorem 3 Under the relevant null hypothesis, we have, as T →∞,
a) For TP-7, under A2 and A3∗:

UDmaxF3,T = max
1≤ma≤M

supF3,T (ma, na, ε|m = 0, na)

⇒ max
1≤ma≤M

sup
(λc1,...,λcma)∈Λvc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)

≤ max
1≤ma≤M

sup
(λc1,...,λcma)∈Λc,�

maX
j=1

||λcjWq(λ
c
j+1)− λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λ

c
j+1 − λcj)

b) For TP-8, under A2 and A4∗:

UDmaxF4,T = max
1≤na≤N

max
1≤ma≤M

supF4,T (ma, na, ε|n = m = 0)

⇒ max
1≤na≤N

max
1≤ma≤M

sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

⎡⎢⎣
Pma

j=1

||λcjWq(λ
c
j+1)−λcj+1Wq(λ

c
j)||2

λcj+1λ
c
j(λcj+1−λcj)

+
Pna

i=1

(λviW(λvi+1)−λvi+1W (λvi ))
2

λvi+1λ
v
i (λvi+1−λvi )

⎤⎥⎦
The limit distribution applicable for the testing problem TP-8 is new. We obtained

critical values using simulations as discussed above for the case of a fixed number of breaks

under the alternative hypothesis. These are presented in Table 1 for ε = 0.1, 0.15, and 0.20,

and values of M and N up to 2.
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5.4 Testing for an additional break

We now consider the testing problems TP-9 and TP-10, which looks at whether including

an additional break is warranted. Let (eT c
1 , ..., eT c

m; eT v
1 , ..., eT v

n) denote the estimates of the

break dates in the regression coefficients and the variance of the errors obtained jointly by

maximizing the quasi-likelihood function assuming m breaks in the coefficients and n breaks

in the variance.

For the testing problem TP-9, the issue is whether an additional break in the regression

coefficients is present. Following Bai and Perron (1998) and Qu and Perron (2007a), the test

is

supSeqT (m+ 1, n|m,n) = max
1≤j≤m+1

sup
τ∈Λcj,ε

LRT (eT c
1 , ..., eT c

j−1, τ , eT c
j , ..., eT c

m; eT v
1 , ..., eT v

n)

−LR(eT c
1 , ..., eT c

m; eT v
1 , ..., eT v

n)

where

Λc
j,ε = {τ ; eT c

j−1 + (eT c
j − eT c

j−1)ε ≤ τ ≤ eT c
j − (eT c

j − eT c
j−1)ε} (16)

This amounts to performing m + 1 tests for a single break in the regression coefficients for

each of the m+1 regimes defined by the partition {eT c
1 , ..., eT c

m}. Note that there are different
scenarios when allowing breaks in coefficients and in the variance to happen at different

dates, since (eT c
1 , ..., eT c

m) and (eT v
1 , ..., eT v

n) can partly or completely overlap or be altogether

different. This implies two possible cases: 1) if the n break dates in variance are a subset of

the m break dates in coefficients, then there is no variance break between eT c
j−1 and eT c

j ; 2)

otherwise, there is one or more variance breaks between eT c
j−1 and eT c

j . In either cases, one

can appeal to the results of part (c) of Theorem 1 with ma = 1 since any value of na (the

number of breaks in variance) is allowed, including 0. It is then easy to deduce that, in the

case of martingale errors, the limit distribution of the test is, under Assumptions A2 and

A3,

lim
T→∞

P (supSeqT (m+ 1, n|m,n) ≤ x) = Gq,ε (x)
m+1

where Gq,ε (x) is the cumulative distribution function of the random variable

sup
λ∈Λ1,ε

(Wq (λ)− λWq (1))
2

λ (1− λ)
. (17)

where Λ1,ε = {λ; ε < λ < 1− ε}. The critical values of the distribution function Gq,ε (x)
m+1

can be found in Bai and Perron (1998, 2003b). When serial correlation in the error, the
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principle is the same except that the statistic is based on the robust Wald test supF3,T as

defined by (15) applied for a one break test to each segment.

For the testing problem TP-10, similar considerations apply. Here the issue is whether

an additional break in the variance is present. The test statistic is

supSeqT (m,n+ 1|m,n) =
³
2/ψ̂

´
max

1≤j≤n+1
sup
τ∈Λvj,ε

LRT (eT c
1 , ..., eT c

m; eT v
1 , ..., eT v

j−1, τ , eT v
j , ..., eT v

m)

−LR(eT c
1 , ..., eT c

m; eT v
1 , ..., eT v

n)

where

Λv
j,ε = {τ ; eT v

j−1 + (eT v
j − eT v

j−1)ε ≤ τ ≤ eT v
j − (eT v

j − eT v
j−1)ε}.

The correction factor (2/ψ̂) is needed to ensure that the limit distribution of the test is free

of nuisance parameters when the errors are allowed to be non-Normal, serially correlated

and conditionally heteroskedastic. One can then use part (b) of Theorem 1 to deduce that,

under A1 and A4, or A1 and A3∗ applied to each segments under the null hypothesis,

lim
T→∞

P (supSeqT (m,n+ 1|m,n) ≤ x) = G1,ε (x)
n+1 .

6 Monte Carlo experiments

This section presents the results of simulation experiments to address the following issues:

1) which particular version of the correction factor ψ̂ has better finite sample properties?; 2)

whether applying a correction valid under more general conditions than needed is detrimental

to the size and power of the test; 3) the finite sampe size and power of the various tests

proposed. Throughout, we use 1,000 replications.

6.1 The choice of ψ̂

To address what specific version of the correction factor to use, we consider the size and

power of the supLR∗4,T test under the following simple Data Generating Process (DGP)

with ARCH(1) errors:

yt = μ1 + μ21(t > [.25T ]) + et,

et = ut
p
ht,

ut ∼ i.i.d. N(0, 1),

ht = δ1 + δ21 (t > [.75T ]) + γe2t−1,
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with h0 = δ1/ (1− γ) and δ1 = 1. The sample size is T = 100 and we set the truncation to

ε = 0.20. Under the null hypothesis of no change μ2 = δ2 = 0, while under the alternative

hypothesis one break in mean and one break in variance are allowed. μ1 = 0 under both the

null and alternative hypothesis. We consider three versions for the estimate ψ̂ as defined

by (11): 1) using the residuals under the alternative hypothesis to construct the bandwidth

m and to estimate the relevant autocovariances of ηt (labelled “alternative”); 2) using the

residuals under the null hypothesis instead (labelled “null”); and, as suggested by Kejriwal

and Perron (2006a), 3) using a hybrid method that constructs the bandwidth m using the

residuals under the alternative hypothesis but uses the residuals under the null to estimate

the relevant autocovariances of ηt (labelled “hybrid”).

The results for the exact size of the test (using a 5% nominal size test) are presented in

Table 2. They show the method “alternative” to exhibit substantial size distortions, that

increase as γ, which indicates the extent of the correlation in the squared residuals, increases.

The method “null”, on the other hand, shows conservative size distortions. Finally, the

hybrid method shows an exact size close to the nominal level for all cases considered.

The results for power are presented in Table 3. We only consider the methods “null”

and “hybrid” given the high size distortions of the method “alternative”. They show that

substantial power gains can be achieved using the “hybrid” method as opposed to the “null”

method, especially if the ARCH effect is pronounced. Hence, we recommend using the

“hybrid” method and all results below will be based on it.

6.2 Should we always correct?

We now address the issue of whether it is costly in terms of power to use a correction valid

under more general conditions than needed. To that effect we first consider the power of the

supLR∗4,T test under the following DGP with Normal errors:

yt = μ1 + μ21(t > T c
1 ) + et,

et ∼ i.i.d. N(0, 1 + δ1(t > T v
1 )),

where we set μ1 = 0 and μ2 = δ. We consider three scenarios for the timing of the breaks: a

common break in mean and variance at T c
1 = T v

1 = [.5T ], and disjoint breaks at {T c
1 = [.3T ],

T v
1 = [.6T ]} and {T c

1 = [.6T ], T v
1 = [.3T ]}. We use two sample sizes, T = 100, 200 and

the power, for 5% nominal size tests, is evaluated at values of δ ranging from 0.25 to 1.5.

Three versions of the supLR∗4,T tests are evaluated: 1) with a full correction based on ψ̂ as

defined by (11) using the hybrid method, which is valid for errors that can be conditionally
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hetereoskedastic and serially correlated (labelled “full”); 2) a correction that is valid for i.i.d.

errors, though not necessarily Normal, given by ψ̂ = μ̂4/σ̂
4 − 1, where σ̂2 = T−1

PT
t=1 û

2
t

and μ̂4 = T−1
PT

t=1 û
4
t with ût the residuals under the null hypotheses (labelled “i.i.d.”); 3)

no correction, i.e., using ψ̂ = 2, which is the appropriate value with Normal errors (labelled

“NC”). The results are presented in Table 4. They show that the power is basically the

same using any of the three methods. Hence, there is no cost in this case in using a full

correction.

Table 5 presents related results for the test supLR∗1,T , which tests for a single break in

variance assuming no break in the regression coefficients. The DGP is yt = et, with et ∼ i.i.d.

N(0, 1+δ1(t > [.5T ])) and δ varies between 0 and 1.5. The full correction yields power similar

to a correction that correctly assumes i.i.d. errors, though here imposing Normality can lead

to tests with somewhat higher power.

Overall, using the full correction entails little power loss and, hence, we shall continue to

use it in all results below. There may be cases where correctly imposing Normality can lead

to tests with slightly higher power but this can be achieved only if one has the correct prior

knowledge of the true distribution of the errors, a case that is unlikely to occur in practice.

6.3 Testing for variance breaks only

We now consider the case of testing only for variance breaks assuming no change in regres-

sion coefficients. To that effect we shall investigate the properties of the following tests:

the supLR∗1,T (na, ε|m = n = 0), abbreviated supLR∗1,T (na, ε), the UDmaxLR1,T for test-

ing versus an unknown number of breaks up to N = 5, and a corrected version of the CUSQ

given by

CUSQ∗ =
supλ∈[0,1]

¯̄̄
T−1/2

hP[Tλ]
t=1 ev2t − [Tλ]

T

PT
t=1 ev2t i¯̄̄

ϕ̂1/2a

with

ϕ̂a =

(T−1)X
j=−(T−1)

w (j,m)
TX

t=|j|+1
η̂tη̂t−j

where η̂t = ev2t −σ̂2, with σ̂2 = T−1
PT

t=1 ev2t and where evt denotes the recursive residuals. Here
also w (j,m) is the Quadratic Spectral kernel and the bandwidthm is selected using Andrews’

(1991) method with an AR(1) approximation. The aim of the design is to address the

following issues: a) the size of the supLR∗1,T (na, ε) and UDmaxLR1,T tests; b) the relative

power of the three tests; c) the power losses obtained when under-specifying the number of
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breaks; d) the relative power of the UDmaxLR1,T compared to the supLR∗1,T (na, ε) with

na specified to be the true number of breaks.

We start with a simple design with Normal errors and the DGP is yt = et; et ∼ i.i.d.

N(0, 1+ δ1(t > [.5T ])). We use T = 100, 200 and for the supLR∗1,T (1, ε) and UDmaxLR1,T
tests the trimming parameter is set to ε = 0.25. The coefficient δ varies between 0 (size) and

1.5. The results are presented in Table 6. They show the exact sizes of the supLR∗1,T (1, ε)

and UDmaxLR1,T tests to be close to the nominal 5% size. The CUSQ∗ test is slightly

undersized. The highest power is achieved using the supLR∗1,T (1, ε) test. Interestingly, the

UDmaxLR1,T test has power very close to that of the supLR∗1,T (1, ε) test, even though the

range of alternatives considered is broader.

We next consider a dynamic model with ARCH errors, for which the DGP is given by

yt = c+ αyt−1 + et,

et = ut
p
ht,

ut ∼ i.i.d. N(0, 1),

ht = δ1 + δ21 (t > [.5T ]) + γe2t−1,

where we set h0 = δ1/ (1− γ), c = 0.5, δ1 = 0.1, and the trimming parameter is again

ε = 0.25. We consider two values of the autoregressive parameter α = 0.2, 0.7, the ARCH

coefficient is set to γ = 0.1, 0.3 and 0.5, and again the size and power of 5% nominal size

tests are evaluated at T = 100, 200. The magnitude of the change δ2 varies between 0 (size)

and 0.30. The results are presented in Table 7. They show again the exact sizes of the

supLR∗1,T (1, ε) and UDmaxLR1,T tests to be close to the nominal 5% size. The CUSQ∗

test is again slightly undersized but more so as γ increases. The UDmaxLR1,T test still has

power very close to that of the supLR∗1,T (1, ε) test, even though the range of alternatives

considered is broader. The power of the latter two tests dominates that of the CUSQ∗

especially when T = 100, in which case the discrepancies can be substantial.

We now turn to a case with two breaks in variance. The DGP is yt = et; et ∼ i.i.d.

N(0, 1 + δ1([.3T ] < t ≤ [.6T ])). This specifies a model where the variance increases at

[0.3T ] and returns back to its original level at [0.6T ]. The sample size is set to T = 200.

We consider four values of the trimming parameter ε = 0.10, 0.15, 0.20 and 0.25. The

magnitude of the break in variance varies between δ = 0 (size) and δ = 3. We again consider

the UDmaxLR1,T test with N = 5 but include both the supLR∗1,T (1, ε) test for a single

break and the supLR∗1,T (2, ε) test for two breaks to assess the extent of power gains when

specifying the correct number of breaks. The results are presented in Table 8. Consider first
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the size of the tests. The supLR∗1,T (1, ε), supLR
∗
1,T (2, ε) and UDmaxLR1,T are slightly

conservative when ε is small but less so as ε increases. The CUSQ∗ is more conservative

with an exact size of 0.026. As expected, power increases as ε increases since the class

of alternatives is smaller. When comparing the supLR∗1,T (1, ε) and supLR
∗
1,T (2, ε) tests,

the latter is substantially more powerful, indicating that allowing for the correct number of

breaks is important for power considerations. Here, the UDmaxLR1,T is not as powerful as

the supLR∗1,T (2, ε) but more powerful than the supLR
∗
1,T (1, ε). All versions of these tests

are considerably more powerful than the CUSQ∗, which shows little power.

6.4 Conditional tests

We now consider the properties of the tests that condition on either breaks in coefficients

(resp., variance) when testing for changes in variance (resp., coefficients). Consider first

the size and power of supLR∗2,T (ma, na, ε|n = 0,ma) which tests for na changes in variance

conditional on ma changes in regression coefficients. We set ma = na = 1 and the DGP is

a simple mean shift model with change in mean of magnitude μ2 at mid-sample with i.i.d.

Normal errors having a change in variance of magnitude δ (under the alternative hypothesis)

that occurs at [0.25T]. The results for size are presented in Table 9. When there is no

change in mean (μ2 = 0), the test exhibits liberal size distortions, as expected since the limit

distribution is inappropriate. The exact size approaches the 5% nominal size rather quickly

as μ2 increases, and more so the larger the trimming ε and/or the sample size T . When

the change in mean is very large, the test is conservative and more so as the trimming is

larger. This is due to the fact that the limit distribution used is actually an upper bound

as discussed in Remark 1. The results for power are presented in Table 10. Given the fact

that the test is conservative as μ2 increases, the power accordingly decreases, though not to

a large extent. It increases rapidly with the sample size and marginally with the value of

the trimming ε.

6.5 Size and power of the supLR∗4,T and UDmax tests

We now present results about the properties of the supLR∗4,T and UDmax tests. We first

consider the size of the tests with normal i.i.d. errors, with the DGP set to yt = et ∼ i.i.d.

N(0, 1). We use three values of the trimming parameter ε = 0.1, 0.15 and 0.2. For the

UDmax test,M = N = 2 and for the supLR∗4,T test, we consider the following combinations:

a) ma = na = 1, b) ma = 1, na = 2, c) ma = 2, na = 1. Two sample sizes are used, T = 100,

200. The results are presented in Table 11 and they show the size to be close to the nominal
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5% level. Table 12 presents the results of a similar experiment but with ARCH(1) errors

so that the DGP is yt = et with et = ut
√
ht, where ut ∼ i.i.d. N(0, 1), ht = δ1 + γε2t−1,

h0 = δ1/ (1− γ), δ1 = 1 and γ takes values 0.1, 0.3 and 0.5. There are some cases with some

slight size distortions when T = 100 but these quickly decrease when T = 200.

We now consider the power of the test. Since some partial results for the one break case

are available in Tables 3 and 4 for the supLR∗4,T test, we shall concentrate on the case with

a different number of breaks in coefficients and in variance. We also only consider Normal

errors in the DGP though the hybrid-type correction is still applied. Table 13 presents the

results for the case with one break in coefficients and two breaks in variance, in which case

the DGP is given by

yt = μ1 + μ21(t > T c) + et,

et ∼ i.i.d. N(0, 1 + δ1(T v
1 < t ≤ T v

2 ))

with μ1 = 0, μ2 = δ. For the tests the trimming parameter used is ε = 0.1. Five different

configurations of break dates are considered. We analyze two forms of the supLR∗4,T test: a)

one that tests for a single break in both mean and variance, b) one that correctly tests for

two changes in variance and one change in mean. This is done to investigate the extent of

the power differences when underspecifying the number of breaks. As expected, the power

increases rapidly with δ and with T . With the DGP used, the power is similar whether

accounting for one or (correctly) two breaks in variance. The power of the UDmax test is

somewhat below the power of both versions of the supLR∗4,T test. This may, however, be

specific to the DGP considered.

Table 14 presents the results for the case with two breaks in coefficients and one break

in variance, in which case the DGP is given by

yt = μ1 + μ21(T
c
1 < t ≤ T c

2 ) + et,

et ∼ i.i.d. N(0, 1 + δ1(t > T v))

with μ1 = 0 and μ2 = δ. Again, we consider two forms of the supLR∗4,T test: a) one that

tests for a single break in both mean and variance, b) one that correctly tests for two changes

in mean and one change in variance. A first difference is the fact that for given values of

δ and T , the power is lower than in the case of one break in coefficient and two breaks in

variance, indicating that changes in variance are easier to detect than changes in mean. The

second difference is that the UDmax test now has power in between that of the test that

correctly specifies the type and number of breaks and the one that underspecifies the number
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of changes in mean. The difference can indeed be substantial and, in line with the results of

Bai and Perron (2006), the power of the UDmax test is close to the power attainable when

correctly specifying the type and number of breaks.

7 Estimating the numbers of breaks in coefficients and in variance

In this Section, we discuss a specific to general sequential procedure to estimate the number

of breaks in the coefficients of the conditional mean and in the variance. The starting point

is the use of a modification of the sequential procedure discussed in Qu and Perron (2007a).

Our problem is, however, more complex since we wish to ascertain what types of break occur

at any given selected break date, not only to know whether some kind of break did occur.

Hence, the need for some refinements. The main difficulty is the fact that if a break occurs, it

can be associated with a change in either or both the regression coefficients and the variance,

and a method to decide which case it is in effect needs to be applied.

The starting point is to modify the supLR∗4,T so that it can be applied in a sequential

manner to address the testing problem

H0 : {m = c, n = c} versus H1 : {m = c+ 1, n = c+ 1}

The procedure is to test the null hypothesis of c breaks versus the alternative hypothesis of

c + 1 breaks by performing a one break test for each of the c + 1 segments defined by the

partition (T̂1, ..., T̂l), which are the estimates of the break dates obtained by maximizing the

Gaussian likelihood function defiened by (7) with T c
j = T v

i = Tk. The test statistic is then

the maximal value of the tests over all c+ 1 segments, denoted supSeqT (c+ 1|c). It follows
that the limit distribution of the test is given by

lim
T→∞

P (supSeqT (c+ 1|c) ≤ x) = G4 (x)
c+1

where G4 (x) is the distribution function of the random variable defined by (17) with q + 1.

Upon a rejection, a model with c + 1 breaks is considered with the additional break being

inserted within the segment associated with the maximal value of the tests at the position

that maximizes the likelihood function. This procedure is iterated until a non-rejection

occurs. Let the number of breaks thus selected be denote by K̄.

The next step is to decide whether a break in coefficients, in variance or in both has

occurred at each of the selected break dates. We then perform standard hypothesis testing

for the equality of the parameters across adjacent segments. Since the limit distribution of
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the estimates of the parameters of the model are the same whether using estimates of the

break dates or their true value, standard procedures can be applied. Consider first the case

of testing whether the regression coefficients are equal across the two regimes (T̂k−1, T̂k),

regime k, and (T̂k, T̂k+1), regime k+1, separated by the kth break (k = 1, ..., K̄). Denote the

true value of the regression coefficients in regimes k and k + 1 by βk and βk+1, respectively.

The null hypothesis is then H0 : βk = βk+1 and the alternative hypothesis, H1 : βk 6= βk+1.

Note that since there is a break in either the regression coefficients and/or the variance of

the errors, under the null hypothesis there must be a change in the variance of the errors.

Hence, the test to be applied is a standard Chow-type test allowing for a change in variance

across regimes (see Goldfeld and Quandt, 1978).

Consider now the testing problem H0 : σ
2
k = σ2k+1 versus H1 : σ

2
k 6= σ2k+1, where σ

2
k and

σ2k+1 are the variances of the errors in regimes k and k + 1, respectively. The Wald test

corrected for potential non-normality and conditional heteroskedasticity is given by

Wk =
(T̂k − T̂k−1)(T̂k+1 − T̂k)

(T̂k+1 − T̂k−1)(μ̂4 − σ̂4)

¡
σ̂2k+1 − σ̂2k

¢2
,

where σ̂2k and σ̂
2
k+1 are the maximum likelihood estimates of σ

2
k and σ

2
k+1 (for the same reasons

discussed above these are constructed allowing the regression coefficients to be different

in regimes k and k + 1), and μ̂4 is a consistent estimate of E(u
4
t ), e.g., μ̂4 = (T̂k+1 −

T̂k−1)−1
PT̂k+1

T̂k−1+1
û4t , constructed under the alternative hypothesis to maximize power.

To assess the finite sample properties of this specific to general procedure, we performed

a simple simulation experiment. The basic DGP is

yt = μ1 + μ21(t > T c) + et,

et ∼ i.i.d. N(0, 1 + δ1(t > T v)),

so that a maximum of one break in either mean or variance is allowed. The sample size is

T = 200 and the tests are constructed with a trimming ε = 0.15. We consider the following

scenarios: a) no change in either mean or variance, b) a change in mean only occurring at

mid-sample, c) a change in variance only also occurring at mid sample, d) a change in both

mean and variance occurring at a common date (mid-sample); e) a change in both mean

and variance occurring at different but close dates (T c = [0.5T ], T v = [0.7T ]); f) a change in

both mean and variance occurring at different and distant dates (T c = [0.25T ], T v = [0.75T ]).

Whenever breaks occur, different magnitudes are considered.

The results are presented in Table 15. In general, the procedure works quite well in select-

ing the correct number and type of breaks. There are cases, however, where the probability
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of making the correct selection is quite low. This occurs when both changes in mean and

variance are not large and occur at different dates, especially when the respective break dates

are far apart. The basic reason for that is the fact that the supSeqT (c+ 1|c) statistic jointly
tests whether a break in both regression coefficients and variance occur. Hence, if only one

type of break occurs the power can be quite low unless the magnitudes of the breaks are

large. Unfortunately, this situation is expected to be quite common in practice, as we shall

see in the empirical applications reported in the next section. Hence, though this specific

to general procedure is valid in large samples, it should not be applied mechanically. Care

must be exercised to assess whether we are in a situation where its finite sample properties

are rather poor.

An alternative approach is to use a general to specific type of procedure to determine

the appropriate number and type of breaks. This involves using the battery of tests that

we presented in this paper in a judicious way. The procedure cannot be mechanized but is

likely to deliver better results. We shall illustrate how to apply it in the context of actual

applications to be discussed in the next section.

8 Applications

The set of testing procedures we developed provide useful tools to detect jointly structural

changes in the unconditional variance of the errors and the parameters of the conditional

mean in a linear regression model. To our knowledge no such test is available under the

level of generality that we consider. This is important for practical applications as witnessed

by recent interest in macroeconomic and finance where documenting structural changes in

the variability of shocks to simple autoregressions or Vector Autoregressive Models has been

a concern; see, among others, Blanchard and Simon (2001), Herrera and Pesavento (2005),

Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Sensier and van Dijk (2004)

and Stock and Watson (2002).

Stock and Watson (2002) present an exhaustive analysis documenting facts about po-

tential changes in the volatility of macroeconomic time series using the two step approach

described in Section 2. Of interest here is the fact that many such series seem to have

experienced a decline in volatility in the mid 80s. We reconsider the analysis presented in

their Table 2 pertaining to 22 common macroeconomic variables. These are quarterly series

covering the period 1960-2001, whose list is contained in Table 16, along with the relevant
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transformation to eliminate trend and/or unit root 1. Graphs of the series are presented in

Figures 7 and 8. With the variables transformed to achieve stationarity the basic regression

is a simple AR(4) with a fitted intercept.

We first discuss how we used our testing procedures to select the number of breaks in

coefficients (intercept and autoregressive parameters) and in variance. With the types of

breaks in the series analyzed, the sequential procedure did not perform well. This is due to

the fact that in most cases changes in both the coefficients and the variance did occur and

they did so at different times, a case for which the specific to general procedure performs

poorly. Hence, we used a procedure more akin to a general to specific one. To start, we

set an upper bound of two breaks in each of the coefficients and variance, which means a

maximum of four breaks overall. This should be enough for the types of series analyzed. In

any event, we also present evidence that two breaks are enough.

The first statistic used is the UDmax test with M = N = 2. We report in Table 16 the

outcome of this test with the trimming parameter ε = 0.15 and ε = 0.20. It shows significant

evidence for at least some breaks for 14 of the 22 series. For the eight series for which this

test is not significant, Stock and Watson reported evidence of some breaks for five of these:

consumption, change in inventory investment, total production of goods, nondurable goods

and non-agricultural employment.

For those series for which the UDmax test shows a rejection, we computed a wide range

of tests to decide which model to select. To illustrate, consider the case of the GDP series

for which we select m = 1 and n = 2. The supLR∗4,T (1, 2) is indeed significant at the 1%

level. We then consider the sequential test supSeqT (m,n+ 1|m,n) to see if too many or

too few breaks are included. The test supSeqT (2, 2|1, 2) is insignificant indicating that an
additional break in coefficients is unwarranted. The supSeqT (1, 2|1, 1) test is significant
indicating that a second break in variance is warranted. The supLR3,T (1, 2|0, 2) test is not
significant at the 10% level but marginally, so that given the low power of this test induced

by the fact that 5 parameters are allowed to change, we decided to keep one break in the

coefficients (the parameter estimates will indeed show an important change). Finally, the

supSeqT (1, 3|1, 2) is not significant indicating that a third break in variance is not needed.
This is the basic procedure that is repeated for all series. The model selected is presented in

the fourth column of Table 17. In all cases, at least one change in coefficients and in variance

occurs and often two of each do.
1The data source is the DRI-McGraw Hill Basic Economics database. The series were kindly posted by

Mark Watson on his web page.
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Table 17 presents the key parameter estimates: a) the break dates in coefficients (T c
1 and

T c
2 ) and in variance (T

v
1 and T v

2 ); b) the value of the intercept in each regime (αi,i = 1, 2, 3)

to assess whether there are important level shifts; c) the sum of the autoregressive coefficients

in each regime (βi,i = 1, 2, 3) to assess whether there are changes in persistence induced by

different propagation mechanisms; d) the standard deviation of the errors in each regime

(σi,i = 1, 2, 3) to quantify the magnitude of the change in variance (we also present in the

last columns various ratios to help gauge the relative magnitudes across regimes).

The first thing to note is that if one looks at the ratio of the standard deviation of the

errors for the last regime compared to the preceding one, there is indeed strong evidence of a

change mostly for a substantial decrease (GDP, consumption of durables and non-durables,

fixed investment-total, residential investment, production of durable goods and structures,

inflation, the T-bill and T-bond rates). There are, however, several cases where the evidence

shows a substantial increase in the variance of the errors: the consumption and production

of services, exports and imports. Hence, the so-called great moderation did not occur across

all sectors. The last break date is estimated to be in the mid-80s for most series with some

exceptions for which it occurred in the early 90s.

The results show many additional features that are of interest. Consider first the case

when two breaks in the variance of the shocks did occur. What transpires is that there

is a tendency to revert back to the level of the first regime. For example, for GDP, the

ratio σ3/σ2 is 0.35 while σ3/σ1 is 0.67. For inflation, the variance after 1986:1 reverts back

exactly to its level prior to 1971:3. For the interest rate series, there is actually an increase

in variance after the mid-80s compared to before 1967:4 for the T-bill rate and before 1979:3

for the T-bond rate. So this so-called great moderation may be qualified as a phenomenon

where the high variance level of the 70s to early 80s are over and we are back to the level of

(roughly) pre-70s; sometimes this reversion is exact (e.g., inflation), incomplete (e.g., interest

rates) or magnified (real variables). Hence, the so-called “great-moderation” may rather be

qualified as a “great-reversion”.

With respect to the intercept of the regression (the long term level) there is not much

evidence of significant changes with the following exceptions. For “exports”, there is a

decrease in 1972:4 and an increase in 1992:1. For “imports”, we have a mirror image with

an increase in 1967:1 and a decrease in 1990:4. The other series with important level shifts

are the interest rate series: for the 90-day T-bill rate, an increase in 1967:4 and a decrease in

1983:4, the pattern is similar for the 10-year T-bond rate but the increase occurs in 1979:3

and the decrease in 1986:4.
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With respect to the sum of the autoregressive coefficients which can be labelled as the

persistence of the series, there are important changes. For GDP, the consumption and the

investment series, the results point to a one-time increase, though the dates are different. For

the production of services, there are two increases, in 1968:3 and 1982:4. For some other series

the pattern is more complex and interesting. For “inflation”, there is a substantial increase

in 1971:3 and a large decrease in 1986:1 (the pattern is similar for the series “production of

structures”, though the dates and relative magnitudes are different). For the 90-day T-bill

rate, there is a decrease in 1967:4 and an increase in 1983:4. Interestingly, for the 10-year

T-bond rate, the pattern is reversed with an increase in 1979:3 and a decrease in 1986:4.

The most peculiar results are, however, for the “imports” and “exports” series. For both,

there are two changes in variance and in coefficients. In each regime, the variance of the

shocks is the same for the two series. However, the pattern for the measure of persistence

is completely different. For “exports”, there is a very large increase in 1972:4 followed by a

large decrease in 1992:1, while for “imports” we have a large decrease in 1967:1 and a very

large increase in 1990:4.

Since the statistic UDmaxLR4,T tests jointly for the presence of changes in the regres-

sion coefficients and the variance of the errors, it may be the case that it lacks power if

only changes in variance occur (especially if the number of regression coefficients allowed

to change is large; e.g., 5 in the applications here). In that case, an alternative strat-

egy is possible. It involves using the UDmaxLR1,T and SupLR∗1,T tests to assess whether

changes in variance are present assuming no change in coefficients, and then use the statistic

supLR3,T (ma, na, ε|m = 0, na) where na is the number of changes in variance found in the

first step, as well as the statistic supSeqT (m,n+ 1|m,n). Non-rejections with these tests

are then viewed as confirmatory evidence that the results based on the UDmaxLR1,T and

SupLR∗1,T tests were adequate. We illustrate this approach using the series for which we

could not obtain a rejection with the UDmaxLR4,T test but for which Stock and Watson

(2002) claimed evidence in favor a single change in variance. These series are: consumption,

change in inventory-investment, total production of goods and production of nondurables.

The results are presented in Table 18. The UDmaxLR1,T test is significant at the 10%

level at least, except for the total production of goods series for which there is no evidence

of change in the variance of the errors. The use of the SupLR∗1,T leads us to conclude that

there is one change for the consumption and production of nondurables series, while the

evidence points to two changes for the change in inventory investment series. None of the

tests supLR3,T (ma, na, ε|m = 0, na) and supSeqT (m,n+ 1|m,n), conditional on the num-
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ber of breaks in variance found, are significant. Hence, we can be confident that the results

based on UDmaxLR1,T and SupLR∗1,T are not spurious. The parameter estimates yield the

following features. For the consumption series, there is a substantial decrease in variance

in 1983:2 a date which is quite different from the date 1992:1 found by Stock and Watson

(2002). For the production of nondurables series, there is also a large decrease in variance in

1984:3. For the change in inventory-investement series, there is a large increase in variance

in 1973:3 followed by a reversal to roughly the pre-1973 period in 1987:2. Hence, we again

have that for series with two changes, the evidence indicates that the decrease in the 80s is

indeed a reversal to a previous level.

There is undoubtedly a wealth of interesting features in these results that calls for expla-

nations. This is obviously outside the scope of this paper but hopefully they can spur the

interest of macroeconomists.

9 Conclusion

This paper provided tools for testing for multiple structural breaks in the error variance in

the linear regression model with or without the presence of breaks in the regression coef-

ficients. An innovation is that we do not impose any restrictions on the break dates, i.e.,

the breaks in the regression coefficients and in the variance can happen at the same time or

at different times. We proposed statistics which have an asymptotic distribution invariant

to nuisance parameters and are valid in the presence of non-normal errors and conditional

heteroseksaticity, as well as serial correlation. Extensive simulations of the finite sample

properties show that our procedures performs well in terms of size and power, though a spe-

cific to general procedure to estimate the number and type of breaks has some shorthcomings

when the breaks in coefficients and in the variance of the errors occur at different dates.

We applied our testing procedures to various macroeconomic time series studied by Stock

and Watson (2002). On one hand, our results reinforce the prevalence of changes in both

mean, persistence and variance of the shocks in simple autoregressions. Most series have

an important reduction in variance that occurred in the 80s. For many series, however, the

evidence points to two breaks in the variance of the shocks with the feature that it increases

at the first one and decreases at the second. Hence, the so-called “great moderation” may be

qualified as a phenomenon where the high variance level of the 70s to early 80s are over and

we are back to the level of (roughly) pre-70s. Accordingly, the so-called “great-moderation”

may rather be qualified as a “great-reversion”.
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Appendix

Proof of Theorem 1: Part (a) follows from Theorem 5 of Perron and Qu (2007). For part
(b),
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Applying a Taylor expansion to log eσ21,i+1, log eσ21,i and log σ̂2i+1, we obtain after some algebra,
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Now we show that F i
1,T = op (1). We can express F i
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The result follows using the facts that X 0
i+1Xi+1 = Op(T ), Z 0i+1Zi+1 = Op(T ), X 0
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Op(T ), X 0
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1/2), and Z 0i+1Ui+1 = Op(T

1/2). Also, since, under the null hypoth-
esis, with A1 the estimates of the break fractions converge to the true break fractions at a
fast enough rate so that estimates of the parameters of the models are consistent and have
the same limit distribution as when the break dates are known, we have: β− β̂ = Op(T
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Applying a Taylor extension on log eσ2i and log σ̂2i around σ20, we have
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Using arguments similar to those in part (b), under A1 and A2 it can be shown that the
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i
⇒

maX
j=1

||λcjWq

¡
λcj+1

¢− λcj+1Wq

¡
λcj
¢ ||2

λcj+1λ
c
j

¡
λcj+1 − λcj

¢
For part (d)

supLR4,T (ma, na, ε|n = m = 0)

= 2

⎡⎣ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

log L̂T

¡
T c
1 , ..., T

c
ma
;T v
1 , ..., T

v
na

¢− log eLT

⎤⎦
= 2

h
log L̂T (eT c

1 , ..., eT c
ma
; eT v

1 , ..., eT v
na)− log eLT

i
= T log eσ2 − na+1X

i=1

³eT v
i − eT v

i−1
´
log σ̂2i

=
naX
i=1

h eT v
i+1 log eσ21,i+1 − eT v

i log eσ21,i − ³eT v
i+1 − eT v

i

´
log σ̂2i+1

i
+ eT v

1

¡
log eσ21,1 − log σ̂21¢ ,

where

eσ21,i = 1eT v
i

T viX
t=1

(yt − x0teβ − z0teδ)2.
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Applying a Taylor expansion to log eσ21,i+1, log eσ21,i and log σ̂2i+1, we obtain after some algebra,
supLR4,T (ma, na, ε|n = 0,ma) =

naX
i=1

¡
F i
1,T + F i

2,T

¢
+ op (1) ,

where

naX
i=1

F i
1,T

=
naX
i=1

1

σ20

h eT v
i+1eσ21,i+1 − eT v

i eσ21,i − ³eT v
i+1 − eT v

i

´
σ̂2i+1

i
=

1

σ20

maX
j=1

h eT c
j eσ21,j+1 − eT c

j eσ21,j − ³eT c
j+1 − eT c

j

´
σ̂2j+1

i
,

eσ21,j = 1eT c
j

T cjX
t=1

³
yt − x0teβ − z0teδ´2

and

F i
2,T = −

1

2

⎡⎣eT v
i+1

Ãeσ21,i+1 − σ20
σ20

!2
− eT v

i

Ãeσ21,i − σ20
σ20

!2
−
³eT v

i+1 − eT v
i

´µ σ̂2i+1 − σ20
σ20

¶2⎤⎦ .
From the proof of part (c), we have

naX
i=1

F i
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maX
j=1

||λcjWq

¡
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¡
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¡
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and from that of part (b),
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2,T ⇒

ψ

2

¡
λviW

¡
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¢2

λvi+1λ
v
i

¡
λvi+1 − λvi

¢ ,

under assumptions A2 and A4. Hence, we obtain

supLR4,T (ma, na, ε|n = m = 0)⇒ sup
(λc1,...,λcma ;λ

v
1 ,...,λ

v
na)∈Λε

⎡⎢⎣
Pma

j=1
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c
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2
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i=1
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2
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v
i (λvi+1−λvi )

⎤⎥⎦ .
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Table 1: Asympotic critical values of the sup LR∗4,T test (the entries are quantiles x such that P (supLR
∗
4 ≤ x) = α)

ε = 0.10 ε = 0.15
na= 1 na= 2 na= 1 na= 2

q α ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 2
1 .90 12.11 17.58 18.21 22.92 11.53 15.91 16.15 20.04

.95 14.09 19.91 20.49 25.37 13.54 18.33 18.38 22.54

.975 16.59 22.06 22.82 27.66 15.47 20.50 20.88 24.79

.99 19.97 24.79 25.48 30.12 18.86 22.83 23.96 27.40

2 .90 14.94 22.52 20.44 27.36 14.05 20.71 18.56 24.59

.95 17.34 24.72 22.72 29.90 16.56 23.42 20.59 27.06

.975 19.04 26.84 25.06 32.91 18.41 25.59 22.66 29.55

.99 20.82 29.94 27.49 34.72 19.99 27.87 25.13 32.06

3 .90 16.76 26.61 22.62 31.99 16.10 24.40 20.98 28.35

.95 18.79 28.99 25.14 34.36 17.96 27.03 23.01 31.19

.975 20.36 30.63 26.96 36.29 19.73 29.61 25.01 33.42

.99 22.28 33.93 29.51 39.14 21.99 31.31 27.81 36.13

4 .90 19.31 30.63 25.07 36.07 18.31 28.14 22.66 31.94

.95 21.54 33.71 27.34 38.91 20.49 30.84 24.81 34.34

.975 23.81 36.50 29.78 41.25 22.52 33.50 26.84 37.31

.99 26.37 39.79 31.87 44.50 24.84 37.10 29.50 41.07

5 .90 21.35 34.69 26.76 39.78 20.22 32.18 24.40 35.76

.95 23.74 37.53 29.34 43.03 22.38 34.62 26.44 38.19

.975 26.51 39.75 32.16 45.89 24.32 37.32 28.98 41.09

.99 29.23 43.38 35.04 49.63 28.65 40.70 32.53 44.94

ε = 0.20 ε = 0.25 UDmaxLR∗4
na= 1 na= 2 na= 1 M = N = 2

ma= 1 ma= 2 ma= 1 ma= 1 ε = 0.10 ε = 0.15 ε = 0.20
10.83 14.14 14.55 10.08 22.92 20.04 17.14

12.94 16.54 16.44 12.04 25.37 22.54 19.47

14.82 18.54 18.80 13.61 27.66 24.79 22.26

17.21 21.60 22.23 16.45 30.12 27.40 24.41

13.07 18.32 16.34 12.19 27.36 24.59 20.83

15.24 21.17 18.81 14.02 29.89 27.06 23.29

17.62 23.42 20.65 15.84 32.91 29.55 26.15

18.99 26.15 23.39 18.33 34.72 32.06 29.34

15.35 22.55 18.97 14.60 31.99 28.35 25.17

17.17 25.01 20.75 16.26 34.36 31.19 27.32

18.67 26.81 22.39 17.86 36.29 33.42 29.33

20.24 29.07 24.60 19.87 39.14 36.13 31.96

17.37 26.05 20.57 16.41 36.07 31.94 28.33

19.43 28.48 22.84 18.75 38.91 34.34 30.91

21.54 30.88 25.11 20.55 41.25 37.01 33.20

24.31 34.31 26.88 22.69 44.51 41.07 36.08

19.37 29.92 22.09 18.06 39.78 35.76 31.82

21.57 32.15 24.42 20.36 43.03 38.19 34.21

23.53 34.38 26.70 22.54 45.89 41.09 36.71

27.10 38.11 30.04 24.86 49.63 44.94 40.19



Table 2: Size of the sup LR∗4,T using different estimates of ψ in the case of ARCH(1) errors
(DGP: yt = et, et = ut

√
ht, with ut ∼ i.i.d. N(0, 1), ht = δ1 + γe2t−1, h0 = δ1/ (1− γ),

δ1 = 1, T = 100, ε = 0.20, Alternative hypothesis: m = 1, n = 1).
γ alternative null hybrid
0.1 0.083 0.040 0.042
0.2 0.102 0.042 0.049
0.3 0.116 0.038 0.048
0.4 0.139 0.031 0.040
0.5 0.161 0.027 0.042

Note: "alternative" specifies that the unrestricted residuals are used to construct ψ̂ and m; "null" specifies

that the residuals imposing the null hypothesis are used to construct ψ̂ and m, and "hybrid" specifies that

the residuals under the alternative are used to construct m and the residuals under the null hypothesis are

used to construct ψ̂.

Table 3: Power of the sup LR∗4,T using different estimates of ψ in the case of ARCH(1) errors
(DGP: yt = μ1 + μ21(t > [.25T ]) + et, et = ut

√
ht, with ut ∼ i.i.d. N(0, 1),

ht = δ1 + δ21 (t > [.75T ]) + γe2t−1, h0 = δ1/ (1− γ), δ1 = 1, T = 100, ε = 0.20).
a) small change in variance, large change in mean

γ = 0.1 γ = 0.3 γ = 0.5
null hybrid null hybrid null hybrid

μ2\δ2 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5
0.5 0.267 0.299 0.281 0.318 0.222 0.231 0.230 0.250 0.161 0.169 0.169 0.181

1 0.859 0.859 0.863 0.862 0.758 0.752 0.762 0.760 0.612 0.616 0.619 0.631

1.5 0.999 0.998 0.999 0.998 0.986 0.986 0.987 0.986 0.930 0.929 0.932 0.932

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.992 0.993 0.992

b) small change in mean, large change in variance
γ = 0.1 γ = 0.3 γ = 0.5

null hybrid null hybrid null hybrid

δ2\μ2 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5
1 0.202 0.394 0.246 0.429 0.142 0.293 0.173 0.324 0.094 0.216 0.121 0.231

3 0.512 0.682 0.655 0.771 0.332 0.483 0.438 0.569 0.210 0.346 0.277 0.398

5 0.652 0.805 0.822 0.903 0.464 0.592 0.600 0.715 0.299 0.422 0.406 0.495

7 0.731 0.853 0.887 0.945 0.532 0.671 0.693 0.791 0.360 0.477 0.493 0.574

Note: "null" specifies that the residuals imposing the null hypothesis are used to construct ψ̂ and m, and

"hybrid" specifies that the residuals under the alternative are used to construct m and the residuals under

the null hypothesis are used to construct ψ̂.



Table 4: Power of the sup LR∗4,T test using different corrections in the case of Normal errors
(DGP: yt = μ1 + μ21(t > T c

1 ) + et; et ∼ i.i.d. N(0, 1 + δ1(t > T v
1 ), μ1 = 0, μ2 = δ, ε = 0.15)

T = 100
T c
1= T v

1= [.5T ] T c
1= [.3T ], T

v
1= [.6T ] T c

1= [.6T ], T
v
1= [.3T ]

δ full i.i.d. NC full i.i.d. NC full i.i.d. NC
0 0.046 0.045 0.053 0.046 0.045 0.053 0.046 0.045 0.053

0.25 0.125 0.126 0.125 0.112 0.115 0.123 0.120 0.112 0.121

0.5 0.425 0.439 0.455 0.406 0.401 0.414 0.382 0.377 0.396

0.75 0.780 0.779 0.783 0.750 0.752 0.753 0.685 0.686 0.703

1 0.946 0.947 0.953 0.949 0.948 0.952 0.889 0.890 0.898

1.25 0.992 0.992 0.993 0.991 0.992 0.991 0.978 0.978 0.982

1.5 0.998 0.998 0.999 0.999 0.999 0.999 0.995 0.995 0.995

T = 200
T c
1= T v

1= [.5T ] T c
1= [.3T ], T

v
1= [.6T ] T c

1= [.6T ], T
v
1= [.3T ]

δ full i.i.d. NC full i.i.d. NC full i.i.d. NC
0 0.054 0.053 0.056 0.054 0.053 0.056 0.054 0.053 0.056

0.25 0.228 0.224 0.239 0.213 0.210 0.211 0.206 0.207 0.210

0.5 0.783 0.788 0.779 0.745 0.748 0.732 0.709 0.711 0.719

0.75 0.981 0.982 0.993 0.982 0.982 0.985 0.955 0.953 0.960

1 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.998

1.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers to the tests using

the correction ψ̂ which allows for non-Normal, conditionally heteroskesdatic and serially correlated errors,

as defined by (11); the column "i.i.d." refers to a correction that only allows for i.i.d. non-Normal errors,

i.e., ψ̂ = μ̂4/σ̂
4 − 1, where σ̂2 = T−1

PT
t=1 û

2
t and μ̂4 = T−1

PT
t=1 û

4
t with ût the residuals under

the null hypotheses; the column “NC” applies no correction and sets ψ̂ = 2, which is valid with Normal
errors.

Table 5: Size and Power of the sup LR∗1,T test using different corrections in the case of Normal errors
(DGP: yt = et; et ∼ i.i.d. N(0, 1 + δ1(t > [.5T ]), ε = 0.25)

T = 100 T = 200
δ full i.i.d. NC full i.i.d. NC
0 0.046 0.039 0.038 0.041 0.044 0.049

0.25 0.053 0.073 0.065 0.129 0.112 0.137

0.5 0.159 0.159 0.190 0.363 0.348 0.383

0.75 0.308 0.297 0.365 0.618 0.598 0.609

1 0.462 0.453 0.533 0.803 0.806 0.848

1.25 0.573 0.603 0.668 0.932 0.908 0.944

1.5 0.761 0.690 0.795 0.969 0.967 0.983
Note: see notes to Table 4.

Table 6: Size and Power of the sup LR∗1,T (na = 1), UDmax and CUSQ∗ tests in the case of Normal errors
(DGP: yt = et; et ∼ i.i.d. N(0, 1 + δ1(t > [.5T ]) , ε = 0.25)

T = 100 T = 200
δ sup LR∗1,T UDmax CUSQ∗ sup LR∗1,T UDmax CUSQ∗

0 0.046 0.041 0.030 0.041 0.041 0.031

0.25 0.053 0.050 0.060 0.129 0.126 0.098

0.5 0.159 0.159 0.134 0.363 0.350 0.345

0.75 0.308 0.300 0.291 0.618 0.607 0.595

1 0.462 0.448 0.427 0.803 0.796 0.805

1.25 0.573 0.558 0.560 0.932 0.928 0.905

1.5 0.761 0.614 0.645 0.969 0.965 0.964



Table 7: Size and Power of the sup LR∗1,T (na = 1, ε), UDmax and CUSQ∗ tests in a dynamic model with ARCH(1) errors

(DGP: yt = c+ αyt−1 + et, et = ut
√
ht, with ut ∼ i.i.d. N(0, 1), ht = δ1 + δ21 (t > [.5T ]) + γe2t−1, h0 = δ1/ (1− γ), c = 0.5, δ1 = 0.1, ε = 0.25).

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
δ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.056 0.052 0.028 0.054 0.052 0.031 0.050 0.050 0.031 0.052 0.050 0.027 0.050 0.055 0.028 0.052 0.049 0.019

0.05 0.165 0.156 0.134 0.138 0.136 0.083 0.125 0.126 0.054 0.170 0.160 0.139 0.140 0.147 0.082 0.116 0.096 0.059

0.10 0.434 0.417 0.268 0.302 0.293 0.151 0.209 0.201 0.149 0.429 0.415 0.297 0.303 0.283 0.149 0.209 0.209 0.147

0.15 0.620 0.608 0.528 0.452 0.440 0.324 0.318 0.309 0.196 0.623 0.608 0.555 0.452 0.453 0.317 0.306 0.282 0.202

0.20 0.811 0.807 0.649 0.617 0.602 0.413 0.434 0.411 0.315 0.809 0.801 0.678 0.611 0.594 0.399 0.415 0.430 0.319

0.30 0.916 0.911 0.828 0.784 0.775 0.570 0.562 0.552 0.407 0.916 0.909 0.854 0.775 0.727 0.558 0.544 0.542 0.423

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
δ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.043 0.043 0.034 0.052 0.050 0.029 0.038 0.035 0.023 0.044 0.042 0.032 0.043 0.044 0.030 0.035 0.028 0.034

0.05 0.351 0.341 0.313 0.214 0.209 0.190 0.139 0.133 0.114 0.350 0.340 0.309 0.209 0.203 0.192 0.123 0.122 0.120

0.10 0.753 0.749 0.726 0.497 0.485 0.501 0.313 0.300 0.299 0.758 0.749 0.728 0.522 0.506 0.507 0.277 0.312 0.266

0.15 0.927 0.923 0.930 0.740 0.727 0.723 0.512 0.496 0.442 0.929 0.921 0.933 0.729 0.745 0.709 0.448 0.467 0.404

0.20 0.981 0.981 0.984 0.885 0.876 0.837 0.621 0.614 0.616 0.980 0.979 0.982 0.878 0.839 0.825 0.627 0.631 0.576

0.30 0.999 0.999 0.998 0.954 0.950 0.931 0.780 0.773 0.719 0.999 0.998 0.997 0.949 0.940 0.924 0.759 0.749 0.698



Table 8: Size and Power of the sup LR∗1,T (na, ε), UDmax and CUSQ∗ tests with Normal errors and two variance breaks
(DGP: yt = et; et ∼ i.i.d. N(0, 1 + δ1([.3T ] < t ≤ [.6T ]), T = 200)

ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25
δ na= 1 na= 2 UDmax na= 1 na= 2 UDmax na= 1 na= 2 UDmax na= 1 na= 2 UDmax CUSQ∗

0 0.033 0.033 0.032 0.036 0.033 0.033 0.040 0.035 0.039 0.041 0.035 0.041 0.026

0.25 0.071 0.057 0.069 0.080 0.062 0.071 0.080 0.076 0.081 0.087 0.091 0.081 0.039

0.5 0.124 0.133 0.117 0.137 0.167 0.142 0.141 0.197 0.154 0.138 0.234 0.150 0.069

0.75 0.174 0.252 0.193 0.182 0.321 0.218 0.184 0.369 0.219 0.198 0.439 0.242 0.089

1 0.202 0.394 0.271 0.241 0.484 0.325 0.266 0.570 0.364 0.287 0.621 0.374 0.118

1.25 0.280 0.546 0.403 0.328 0.631 0.466 0.367 0.704 0.507 0.387 0.774 0.532 0.154

1.5 0.372 0.673 0.521 0.418 0.760 0.586 0.454 0.825 0.629 0.477 0.868 0.660 0.186

2 0.502 0.866 0.721 0.535 0.915 0.783 0.572 0.950 0.819 0.624 0.965 0.837 0.300

2.5 0.592 0.934 0.827 0.675 0.968 0.878 0.714 0.982 0.909 0.750 0.990 0.922 0.348

3 0.681 0.977 0.909 0.749 0.986 0.938 0.780 0.992 0.960 0.823 0.998 0.971 0.397

Note: The columns na = 1 and na = 2 correspond to the sup LR
∗
1,T (na = 1, ε) and sup LR

∗
1,T (na = 2, ε) tests, respectively.



Table 9: Size of the sup LR∗2,T (ma = 1, na = 1, ε|n = 0,ma = 1) test with different trimming parameter
ε in the case of Normal Errors

(DGP: yt = μ1 + μ21(t > [0.5T ]) + et, et ∼ i.i.d. N(0, 1), μ1 = 0).

T = 100 T = 200
μ2\ε 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25
0 0.095 0.081 0.073 0.066 0.064 0.070 0.064 0.059
0.1 0.097 0.082 0.075 0.066 0.069 0.065 0.061 0.059
0.25 0.088 0.082 0.069 0.062 0.067 0.072 0.060 0.052
0.5 0.078 0.069 0.056 0.048 0.047 0.047 0.039 0.035
0.75 0.056 0.052 0.045 0.033 0.031 0.029 0.026 0.022
1 0.051 0.046 0.038 0.029 0.030 0.030 0.029 0.019
2 0.052 0.041 0.035 0.025 0.031 0.030 0.026 0.017
4 0.049 0.039 0.033 0.021 0.030 0.031 0.027 0.016
10 0.049 0.038 0.032 0.021 0.030 0.030 0.027 0.017
20 0.049 0.038 0.032 0.021 0.030 0.030 0.027 0.017

Table 10: Power of the sup LR∗2,T (ma = 1, na = 1, ε|n = 0,ma = 1) test with different trimming
parameter ε in the case of Normal Errors

(DGP: yt = μ1 + μ21(t > [0.5T ]) + et, et ∼ i.i.d. N(0, 1 + δ1(t > [.25T ]), μ1 = 0).

T = 100
ε = 0.1 ε = 0.2

δ\μ2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.25 0.126 0.125 0.095 0.064 0.060 0.059 0.059 0.108 0.100 0.094 0.052 0.048 0.062 0.040

0.5 0.174 0.178 0.173 0.097 0.102 0.102 0.102 0.148 0.196 0.165 0.102 0.085 0.093 0.113

0.75 0.252 0.249 0.241 0.159 0.158 0.159 0.159 0.264 0.270 0.290 0.167 0.157 0.138 0.139

1 0.348 0.339 0.347 0.224 0.225 0.227 0.227 0.359 0.375 0.371 0.261 0.261 0.266 0.254

1.25 0.437 0.449 0.429 0.318 0.331 0.332 0.332 0.492 0.452 0.442 0.362 0.351 0.368 0.358

1.5 0.528 0.524 0.504 0.414 0.419 0.427 0.427 0.567 0.576 0.568 0.465 0.443 0.459 0.462

2 0.687 0.683 0.665 0.570 0.564 0.578 0.578 0.724 0.738 0.704 0.618 0.636 0.626 0.621

3 0.853 0.849 0.859 0.798 0.790 0.803 0.803 0.905 0.898 0.892 0.849 0.823 0.865 0.847

4 0.938 0.938 0.930 0.908 0.902 0.910 0.910 0.960 0.963 0.958 0.946 0.937 0.933 0.951

T = 200
ε = 0.1 ε = 0.2

δ\μ2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.25 0.128 0.131 0.108 0.067 0.068 0.070 0.070 0.129 0.125 0.095 0.055 0.058 0.056 0.056

0.5 0.279 0.279 0.242 0.177 0.184 0.184 0.184 0.277 0.289 0.248 0.178 0.182 0.185 0.185

0.75 0.476 0.460 0.422 0.333 0.343 0.349 0.349 0.493 0.484 0.443 0.352 0.357 0.359 0.359

1 0.644 0.651 0.615 0.516 0.528 0.534 0.534 0.687 0.692 0.641 0.560 0.569 0.577 0.577

1.25 0.804 0.794 0.771 0.699 0.707 0.714 0.714 0.828 0.821 0.792 0.727 0.737 0.745 0.745

1.5 0.888 0.887 0.878 0.832 0.842 0.843 0.844 0.914 0.910 0.896 0.850 0.859 0.864 0.864

2 0.970 0.973 0.968 0.941 0.948 0.951 0.951 0.978 0.977 0.975 0.957 0.963 0.965 0.965

3 0.998 0.998 0.998 0.997 0.996 0.996 0.996 0.999 0.999 0.998 0.996 0.997 0.997 0.997

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 11: Size of the sup LR∗4,T (ma, na) and UDmax tests in the case of Normal errors
(DGP: yt = et, et ∼ i.i.d. N(0, 1))

T=100
ε ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax
0.2 0.041 0.050 0.045 0.052
0.15 0.046 0.053 0.043 0.046
0.1 0.057 0.058 0.052 0.054

T=200
ε ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax
0.2 0.050 0.044 0.052 0.046
0.15 0.054 0.050 0.047 0.047
0.1 0.048 0.040 0.046 0.045

Table 12: Size of sup LR∗4,T (ma, na) and UDmax tests in the case of ARCH(1) errors
(DGP: yt = et, et = ut

√
ht, with ut ∼ i.i.d. N(0, 1), ht = δ1 + γε2t−1, h0 = δ1/ (1− γ), δ1 = 1)

T=100

ε = 0.1 ε = 0.2
γ ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax

0.1 0.057 0.058 0.058 0.062 0.042 0.057 0.046 0.056

0.3 0.057 0.067 0.059 0.072 0.048 0.068 0.048 0.070

0.5 0.058 0.063 0.057 0.076 0.042 0.064 0.043 0.056

T=200

ε = 0.1 ε = 0.2
γ ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax

0.1 0.058 0.039 0.049 0.053 0.051 0.049 0.051 0.056

0.3 0.054 0.031 0.043 0.050 0.042 0.039 0.040 0.038

0.5 0.044 0.019 0.038 0.044 0.044 0.030 0.037 0.031



Table 13: Size of the sup LR∗4,T (ma, na) and UDmax tests for DGPs with one break in coefficients and two breaks in variance

(DGP: yt = μ1 + μ21(t > T c) + et, et ∼ i.i.d. N(0, 1 + δ1(T v
1 < t ≤ T v

2 )), μ1 = 0, μ2 = δ, ε = 0.1)

ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax

na= 1 na= 2 na= 1 na= 2 na= 1 na= 2 na= 1 na= 2 na= 1 na= 2
T c= T v

1= [.3T ], T
v
2= [.6T ] T c= T v

2 = [.6T ], T
v
1= [.3T ] T c= [.3T ], T

v
1= [.5T ], T

v
2= [.6T ] T c= [.5T ], T

v
1= [.3T ], T

v
2= [.6T ] T c= [.6T ], T

v
1= [.3T ], T

v
2= [.5T ]

δ T = 100
0.25 0.119 0.087 0.083 0.125 0.099 0.094 0.117 0.093 0.086 0.131 0.104 0.093 0.126 0.102 0.096

0.5 0.328 0.283 0.263 0.367 0.317 0.273 0.331 0.268 0.239 0.391 0.316 0.288 0.368 0.306 0.277

0.75 0.667 0.604 0.570 0.715 0.672 0.588 0.610 0.591 0.555 0.734 0.683 0.631 0.726 0.649 0.601

1 0.906 0.891 0.847 0.933 0.917 0.891 0.924 0.883 0.837 0.943 0.927 0.906 0.929 0.916 0.894

1.25 0.984 0.982 0.970 0.994 0.989 0.977 0.985 0.974 0.972 0.994 0.995 0.985 0.995 0.988 0.983

1.5 1.000 0.999 0.998 1.000 1.000 1.000 0.999 0.999 0.998 1.000 1.000 0.999 1.000 1.000 0.999

T = 200
0.25 0.162 0.131 0.123 0.192 0.164 0.142 0.158 0.128 0.109 0.191 0.166 0.146 0.189 0.161 0.138

0.5 0.610 0.583 0.518 0.686 0.662 0597 0.598 0.510 0.468 0.698 0.667 0.605 0.666 0.631 0.572

0.75 0.958 0.948 0.921 0.970 0.964 0.946 0.958 0.924 0.889 0.964 0.966 0.944 0.969 0.962 0.947

1 1.000 0.998 0.996 1.000 0.998 0.995 1.000 0.995 0.992 1.000 0.998 0.998 0.999 0.999 0.997

1.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 14: Size of the sup LR∗4,T (ma, na) and UDmax tests for DGPs with two breaks in coefficients and one break in variance

(DGP: yt = μ1 + μ21(T
c
1 < t ≤ T c

2 ) + et, et ∼ i.i.d. N(0, 1 + δ1(t > T v)), μ1 = 0, μ2 = δ, ε = 0.1).

ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax

na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1
T c
1= T v= [.3T ], T

c
2= [.6T ] T c

1= [.3T ], T
c
2= T v= [.6T ] T c

1= [.5T ], T
c
2= [.6T ], T

v
= [.3T ] T c

1= [.3T ], T
c
2= [.6T ], T

v
= [.5T ] T c

1= [.3T ], T
c
2= [.5T ], T

v
= [.6T ]

δ T = 100
0.25 0.086 0.097 0.084 0.087 0.089 0.090 0.073 0.074 0.071 0.089 0.094 0.086 0.081 0.078 0.083

0.5 0.160 0.240 0.201 0.194 0.270 0.248 0.110 0.121 0.098 0.181 0.264 0.235 0.144 0.197 0.194

0.75 0.300 0.480 0.408 0.380 0.569 0.525 0.183 0.225 0.167 0.370 0.554 0.500 0.248 0.453 0.405

1 0.453 0.725 0.660 0.602 0.850 0.827 0.273 0.350 0.272 0.588 0.825 0.797 0.382 0.733 0.694

1.25 0.660 0.877 0.836 0.791 0.973 0.962 0.377 0.502 0.424 0.771 0.962 0.943 0.513 0.912 0.888

1.5 0.796 0.965 0.936 0.919 0.999 0.995 0.482 0.624 0.545 0.880 0.991 0.989 0.623 0.981 0.971

T = 200
0.25 0.122 0.169 0.131 0.135 0.172 0.147 0.091 0.089 0.080 0.123 0.175 0.144 0.101 0.146 0.125

0.5 0.326 0.512 0.433 0.399 0.574 0.520 0.192 0.234 0.182 0.397 0.560 0.505 0.297 0.460 0.409

0.75 0.636 0.834 0.798 0.745 0.939 0.909 0.392 0.477 0.417 0.733 0.913 0.890 0.540 0.848 0.813

1 0.871 0.978 0.959 0.948 1.000 0.993 0.600 0.724 0.667 0.930 0.998 0.994 0.775 0.990 0.985

1.25 0.967 0.999 0.996 0.992 1.000 1.000 0.775 0.884 0.851 0.986 1.000 1.000 0.911 1.000 1.000

1.5 0.995 1.000 1.000 1.000 1.000 1.000 0.881 0.949 0.950 0.997 1.000 1.000 0.970 1.000 1.000



Table15: Finite sample performance of the specific to general sequential procedure to select the number of breaks in coefficients and variance.

(DGP: yt = μ1 + μ21(t > T c) + et, et ∼ i.i.d. N(0, 1 + δ1(t > T v)), ε = 0.15, T = 200).

m = n = 0 m = n = 1 m = n = 1
T c= [0.5T ], T v= [0.7T ] T c= [0.25T ], T v= [0.75T ]

μ2= δ = 1 μ2= 1, δ = 3 μ2= 1, δ = 5 μ2= δ = 2 μ2= δ = 1 μ2= δ = 2 μ2= 1, δ = 3
prob(m = 0, n = 0) 0.966 0.010 0.001 0.005 0.000 0.019 0.000 0.002

prob(m = 0, n = 1) 0.028 0.018 0.167 0.206 0.000 0.021 0.000 0.055

prob(m = 0, n = 2) 0.001 0.003 0.007 0.010 0.000 0.003 0.000 0.005

prob(m = 1, n = 0) 0.005 0.419 0.010 0.004 0.079 0.612 0.218 0.044

prob(m = 1, n = 1) 0.000 0.512 0.778 0.734 0.883 0.329 0.757 0.868
prob(m = 1, n = 2) 0.000 0.031 0.035 0.040 0.032 0.013 0.022 0.025

prob(m = 2, n = 0) 0.000 0.004 0.000 0.000 0.001 0.003 0.001 0.000

prob(m = 2, n = 1) 0.000 0.003 0.002 0.001 0.004 0.000 0.002 0.000

prob(m = 2, n = 2) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

prob(K̄ = 0) 0.944 0.000 0.000 0.000 0.000 0.004 0.000 0.002

prob(K̄ = 1) 0.053 0.805 0.299 0.109 0.487 0.681 0.238 0.065

prob(K̄ = 2) 0.003 0.195 0.701 0.891 0.513 0.315 0.762 0.933

m = n = 1 m = 1, n = 0 m = 0, n = 1
T c= T v= [0.5T ] T c= [0.5T ] T v= [0.5T ]

μ2= δ = 1 μ2= 1, δ = 3 μ2= 1 μ2= 2 μ2= 3 δ = 1 δ = 2 δ = 3
prob(m = 0, n = 0) 0.005 0.000 0.000 0.001 0.000 0.354 0.032 0.002

prob(m = 0, n = 1) 0.045 0.003 0.000 0.000 0.000 0.628 0.940 0.971
prob(m = 0, n = 2) 0.002 0.000 0.001 0.000 0.000 0.009 0.022 0.021

prob(m = 1, n = 0) 0.126 0.002 0.934 0.933 0.928 0.002 0.000 0.000

prob(m = 1, n = 1) 0.801 0.966 0.044 0.047 0.051 0.005 0.006 0.005

prob(m = 1, n = 2) 0.015 0.024 0.011 0.010 0.009 0.001 0.000 0.001

prob(m = 2, n = 0) 0.001 0.000 0.007 0.008 0.011 0.001 0.000 0.000

prob(m = 2, n = 1) 0.004 0.005 0.002 0.001 0.001 0.000 0.000 0.000

prob(m = 2, n = 2) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

prob(K̄ = 0) 0.000 0.000 0.000 0.000 0.000 0.342 0.030 0.002

prob(K̄ = 1) 0.946 0.948 0.956 0.946 0.943 0.632 0.919 0.945

prob(K̄ = 2) 0.054 0.052 0.044 0.054 0.057 0.026 0.051 0.053

Note: prob(m = j, n = i) represents the probability of choosing j breaks in mean and i breaks in variance, and prog(K̄ = j) denotes the probability of selecting j
total breaks in either mean or variance. The upper bound for the total number of breaks is set to 2.



Table 16: Empirical results for US macroeconomic series: Outcome of the tests.

UDmax(2,2) Model sup Sup-SEQ SupLR∗2,T SupLR3,T
series ε = 0.15 ε = 0.20 LR∗4,T (1,2|1,1) (2,1|1,1) (1,3|1,2) (2,2|1,2) (2,2|2,1) (1,1|1,0) (1,2|1,0) (2,1|2,0) (1,1|0,1) (2,1|0,1) (1,2|0,2)
GDP 39.03c 33.91c (1,2) 39.03a 12.02b 6.36 3.66 9.10 9.43c 15.68a 15.65a 11.74b 7.84 8.14 14.19

Consumption 30.75 29.16

durables 49.65a 46.18a (1,1) 34.51a 3.97 8.42 2.62 11.54 1.30 29.23a 16.27a 38.67a 8.98 12.31 10.02

nondurables 41.63b 41.63a (1,1) 30.17a 2.29 11.62 1.05 11.62 2.58 7.44c 3.75 5.57 25.55a 18.55a 14.03

services 45.85a 45.79a (1,1) 34.31a 1.95 14.83 0.99 15.92 1.47 5.47 3.10 6.43 31.88a 21.70a 30.62a

Investment (total) 25.37 24.27

fixed investment-total 35.77c 29.10 (1,2) 26.39c 8.55c 9.52 4.05 10.78 8.95c 18.06a 11.80a 17.88a 3.02 4.95 3.71

nonresidential 27.72 28.09

residential 44.22b 31.82c (1,1) 28.19a 8.04 16.48 2.45 15.88 6.94 18.56a 11.80a 20.43a 11.97 13.19 11.54

∆inventory-inv/GDP 31.60 24.92

Exports 60.22a 61.96a (2,2) 65.77a 6.97 8.47 4.43 9.91 9.82c 18.13a 14.84a 21.96a 30.71a 19.11a 13.14

Imports 56.64a 57.79a (2,2) 51.39a 2.70 14.32 3.09 13.71 1.65 16.04a 12.58a 12.47a 28.96a 16.81b 30.17a

Government spending 31.89 28.66

Production

goods (total) 25.94 26.04

nondurable 31.57 30.66

durable 34.68 34.99b (1,2) 26.22c 10.43b 8.63 4.06 11.14 6.18 10.82b 9.77a 11.25b 4.35 12.09 8.70

services 40.55b 36.23b (2,1) 41.36a 1.79 8.63 2.24 10.69 0.20 2.12 1.48 3.24 26.64a 19.71a 27.71a

structures 35.05 33.44c (2,2) 41.87b 8.05 7.59 2.79 9.52 7.89 20.35a 12.54a 20.14a 12.95 9.36 10.82

Employment 31.90 26.96

Price inflation 47.82a 47.82a (2,2) 47.82a 11.97b 8.47 4.11 8.47 9.53c 22.68a 15.42a 18.06a 6.73 8.35 12.65

90-day T-bill rate 43.82b 38.07b (2,2) 43.82b 8.22 13.75 8.00 16.89 8.14 9.81b 7.24b 7.41 16.41c 14.19 12.95

10-year T-bond rate 42.84b 44.17a (2,2) 43.39b 19.26a 8.02 9.98c 8.02 18.18a 17.32a 13.87a 15.11a 7.52 5.24 12.04

Note: The test results are based on an AR(4) model. The subscripts a,b, and c indicate a statistic significant at the 1%, 5% and 10% significance level, respectively. For the SupLR∗ tests, the
trimming parameter is ε = 0.15. The first 19 series are annual growth rates (i.e, 100ln (xt/xt−4)), except for the change in inventory investment, which is the annual difference of the
quarterly change in inventories as a fraction of GDP. Inflation is the four-quarter change in the annual inflation rate (i.e., 100

£
ln
¡
Pt/P t−1

¢− ln ¡Pt−4/P t−5
¢¤
), with Pt the GDP

deflator and the two interest rates series are in four-quarter changes (i.e, xt − xt−4).



Table 17: Empirical results for US macroeconomic series: Parameter estimates.

SW (2002)

series T c T v T c
1 T c

2 T v
1 T v

2 α1 α2 α3 β1 β2 β3 σ1 σ2 σ3
σ2
σ1

σ3
σ2

σ3
σ1

GDP . 1983:2 1968:2 1975:4 1983:1 0.019 0.013 0.604 0.722 0.009 0.017 0.006 1.89 0.35 0.67

Consumption . 1992:1

durables 1987:3 1987:3 1991:1 1991:1 0.017 0.02 0.647 0.70 0.046 0.018 0.39

nondurables 1991:4 . 1992:1 1982:1 0.008 0.005 0.692 0.826 0.010 0.006 0.6

services 1969:4 . 1970:1 1977:4 0.02 0.008 0.585 0.758 0.004 0.006 1.5

Investment (total) . .

fixed investment-total . 1983:3 1983:3 1974:3 1983:3 0.013 0.008 0.726 0.821 0.025 0.039 0.018 1.53 0.48 0.73

nonresidential . .

residential . 1983:2 1991:1 1983:4 -0.002 0.019 0.642 0.812 0.075 0.028 0.37

∆inventory-inv/GDP . 1988:1

Exports . 1975:4 1972:4 1992:1 1983:2 1992:1 0.071 0.021 0.041 -0.169 0.730 0.342 0.047 0.020 0.028 0.43 1.4 0.6

Imports 1972:4 1986:2 1967:1 1990:4 1985:2 1995:3 0.037 0.097 0.016 0.470 -0.247 0.747 0.048 0.020 0.027 0.42 1.35 0.56

Government spending . . . .

Production

goods (total) . 1983:4 . .

nondurable . 1983:4

durable . 1985:2 .1993:4 1973:3 1982:3 0.01 0.027 0.556 -0.079 0.017 0.031 0.012 1.82 0.39 0.71

services 1968:3 . 1968:3 1982:4 1995:3 0.032 0.006 0.005 0.334 0.789 0.839 0.004 0.007 1.75

structures 1991:3 1984:2 1973:3 1991:3 1973:3 1983:3 0.016 -0.001 0.018 0.539 0.846 0.467 0.026 0.044 0.018 1.69 0.41 0.69

Employment 1981:2 1983:2

Price inflation 1973:2 . 1971:3 1986:1 1971:3 1986:1 0.001 -0.000 0.000 -0.394 0.561 0.123 0.002 0.004 0.002 2 0.5 1

90-day T-bill rate 1981:1 1984:4 1967:4 1983:4 1967:4 1983:4 0.089 0.167 -0.039 0.663 0.566 0.766 0.223 1.317 0.593 5.91 0.45 2.66

10-year T-bond rate 1981:1 1979:3 1979:3 1986:4 1979:3 1986:4 0.045 0.116 -0.111 0.423 0.646 0.421 0.303 1.072 0.487 3.54 0.45 1.61

Note: The estimation results are based on an AR(4) model and the trimming parameter is ε = 0.15. The first 19 series are annual growth rates (i.e, 100ln (xt/xt−4)), except for the change
in inventory investment, which is the annual difference of the quarterly change in inventories as a fraction of GDP. Inflation is the four-quarter change in the annual inflation rate (i.e.,

100
£
ln
¡
Pt/P t−1

¢− ln ¡Pt−4/P t−5
¢¤
), with Pt the GDP deflator and the two interest rates series are in four-quarter changes (i.e, xt − xt−4).



Table 18: Empirical results for series with variance break only: tests and parameter estimates.

Consumption ∆inventory-inv/GDP Production
goods (total) nondurable

Tests
UDmaxLR1,T 8.75c 12.30b 7.90 16.02a

Model Selected (0,1) (0,2) . (0,1)
SupLR∗1,T 8.75c 9.97a . 16.02a

SupLR3,T
(1,1|0,1) 11.27 7.32 . 10.68
(2,1|0,1) 11.17 4.86 . 7.80
(1,2|0,2) 12.11 13.14 . 7.79
Sup-SEQ
(0,2|0,1) 2.60 7.73 . 0.67
(0,3|0,2) 1.77 0.32 . 0.65

Estimates
T v
1 1983:2 1973:3 . 1984:3

T v
2 . 1987:2 . .
α 0.008 0.000 . 0.020
β 0.763 0.009 . 0.638
σ1 0.010 0.005 . 0.050
σ2 0.006 0.008 . 0.023
σ3 . 0.004 . .
(σ2/σ1) 0.6 1.6 . 0.46
(σ3/σ2) . 0.5 . .
(σ3/σ1) . 0.8 . .

Stock_Waton (2002)
T v 1992:1 1988:1 1983:4 1983:4



0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

22

δ
1

  −−−    Tυ = [.25T]   

  −x−   Tυ = [.50T] 

  −o−   Tυ = [.75T] 

Figure 1: Size of the Sup-LR test for a coefficient change ignoring a variance change
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Figure 7: 22 Macro Time Series_1
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Figure 8: 22 Macro Time Series_2
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