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1 Introduction

Adam Smith showed us the importance of free markets for the welfare of the people in a nation
(Smith, 1776). At that time people were restricted to a local environment and governments
thought they could best protect national interest by preventing too much exchange. The market
has undoubtedly liberated many people from local bonds by promoting free choice. This liber-
ation has stimulated innovation and increased welfare. Thus, the highly specialized institution
of a market—specialized as it concerns the exchange of commodities only—was very success-
ful. This success is explained by the fact that in the 18th and 19th centuries markets made it
possible for people to establish more comprehensive relations to other cultures and resources.
This feature surpasses the commodity dimension usually represented in a market. Commodities
from the Indies, China or Egypt, and its accompanying technical innovations connected people
with other cultures and stimulated their imagination. In this paper we seek to develop a theory
that is founded on these institutional dimensions.

Economists elaborating on the theory of markets emanating from Smith’s seminal work,
have taught us that “free” means “perfect competition”, which is arrived at if no individual has
any observable influence on the formation of the market price. That means a person enters a
market anonymously, and only her anonymous willingness-to-pay is recognized and communi-
cated. Economists have also shown that the perfectly competitive market mechanism is amoral:
it processes what is demanded or supplied, without any moral filtering, and it accepts any ini-
tial distribution of wealth, however unjust. As argued above, this seems far removed from the
underlying basic relational realities.

Furthermore, modern market institutions are designed in a way that goes well beyond the de-
scription of 18th century commodity markets. Markets are established for much more complex
entities as services in the health care sector and complex securities in capital markets. There is a
need for another benchmark to assess the performance of such markets. To answer that question
we introduce a relational economy and derive primeval institutional properties of this relational
economy. Thus, we approach the economy as a complex network of relational activities gener-
ating economic values. These foundations allow us to explore rather directly economic services
as well as commodity trade as sources for the generation of such economic values. As such
this approach seems an urgently needed complement to the standard neo-classical approach in
exploring these issues of complexity in service economies.1

In particular, we aim to extend the Lancasterian approach—separating a commodity from
its properties and explaining the value of a commodity from the utility of its properties (Lan-

1In the subsequent sections of this paper we point out several applications of this relational approach to under-
stand many service sectors of our contemporary economies.
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caster, 1966)—to the performance of economic institutions. We propose to separate these trade
institutions from the basic relational framework in which these institutions are embedded and
supported. Thus, a trading post explicitly emerges within a structure of inter-personal trade
relations, developing into a formal market based on the price mechanism. Therefore, a trading
post is viewed as a cooperative activity among related participants. We introduce a relational
framework in which such cooperative activities can emerge and characterize stability properties
of emerging cooperation structures. Our claim is that all specialized institutional frameworks
have to meet these stability properties when performing smoothly.

Within the relational framework of value-generating activities, we focus on the stability of
these activity patterns. We use standard equilibrium concepts from matching theory (Roth and
Sotomayor, 1990) to describe such stable patterns. We then identify conditions on the relational
structure of value-generating activities that guarantee and characterize the existence of such
stable activity patterns. The identified conditions point unquestionably to institutional features.
This allows us to additionally interpret economic institutions as social rules that support and
guarantee generic stability in an economy.2 Instability of such patterns, on the other hand,
causes eventual undermining of the institutional superstructure of the economy.

In particular we consider a generic form of stability in our framework as a state of the
fundamental structure of economic relationships such that for every possible configuration of
individuals’ productiive abilities and preferences, the economy possesses at least one equilib-
rium state. Within such a generically stable structure, value-generating relations are essentially
transformed into anonymous exchange relations and the generation of economic values can be
optimized.

In Gilles, Lazarova, and Ruys (2007) we introduced an economy in which economic agents
could either be autarkic or engage in a value-generating relationship with one other agent. This
resulted into a relational matching economy.3 Within this framework, we introduced a stable
matching pattern as a set of activated relational activities such that no agent has the incentive
or opportunity to change the relational activity that she participates in. In particular, we in-
vestigated generic stability, the property that the economy possesses at least one stable activity
pattern for any distribution of economic values. The main insight emerging from this analy-

2In economics, through the work of North and Thomas (1973), Williamson (1975), North (1990) and Greif
(2006), institutions are usually understood as devices that lower market transaction costs. Our approach does not
dismiss this interpretation, but rather amends it. Institutions also have other important functions in the economy,
namely as stabilizers and promotors of economic development and growth.

3This setting straightforwardly extends the standard matching model in the sense of Roth and Sotomayor
(1990) by introducing explicit restrictions on the permissible value-generating matchings in which an agent could
participate. Thus, the main hypothesis is here that these binary matching activities are not anonymous. If one
considers agents as persons, one could say that these matchings are formed only between persons who value their
interaction, or who are “acquaintances”.
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sis is that generically stable matching patterns emerge if and only if economic agents assume
complementary social roles that support the formation of their value-generating relationships.
Following our discussion above, such socio-economic roles form an institutional foundation
that supports and promotes stable economic development.

We extend this approach to include more broadly defined cooperative economic activities.
In our relational setting we assume that such cooperative activities require a convener, who
brings together a group of economic agents to form such a value-generating cooperative eco-
nomic activity. Thus, the convener facilitates or initiates the cooperative activity.4 In this regard
these cooperative activities are relational forms of clubs as introduced seminally by Buchanan
(1965). Our main assumption is that the convener can only invite economic agents to partici-
pate in a cooperative activity if they have a binary matching relationship with the convener. In
other words, the convener can only form cooperative activities with acquaintances with whom
she interacts.

Furthermore, the economic values generated through these cooperative activities are ex-
pressed as hedonic utilities. This is a standard technique from the theory of clubs as well. We
refer to the review of Scotchmer (2002) for a discussion of this technique. It allows us to reduce
the analysis of the formation of relational cooperative activities to a single dimension, expressed
through the hedonic utility functions of the various economic agents.

We thus arrive at a relational economy in which economic agents can engage into three types
of economic activities: autarkic activities, binary matching activities, and cooperative activities
formed by a convener. Each of these three types of activities generate different hedonic utility
levels for its participants. We explicitly assume that there are no widespread externalities among
the various activated activities; the generated values are solely the outcome of the activities
themselves. (This does not, however, exclude various forms of externalities among the members
of a cooperative.)

Again, we device a standard equilibrium concept in which each agent participates in exactly
one permissible economic activity. In equilibrium, no agent has an incentive to join another
potentially accessible activity. Such an equilibrium is called a stable activity pattern. We dis-
tinguish two types of stability. Regular stability expresses a pattern of “open” cooperatives in
which conveners cannot deny other agents access to the cooperative. Remarkably many trade
institutions such as markets, trading posts and communal commons satisfy this openness con-
dition. In an open cooperative, the convener is simply a coordinator. Strong stability expresses
a pattern of “closed” cooperatives in which conveners have the ability to dismiss any of its
members. Examples of such closed cooperatives are production teams in the sense of Marshak

4In this setting a market is now a cooperative economic activity in which the market auctioneer acts as its
convener.
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(1955). In these closed cooperatives, conveners act more like managers than coordinators.
We discuss the conditions under which such (strongly) stable activity patterns exist. The

first existence result concerns economies in which there are no explicit externalities among the
members of a multi-agent cooperative economic activity. Since these members can be sepa-
rated, these activities are called separable cooperatives and exhibit rather standard properties.
Examples of such separable cooperatives are trading posts and services such as religious ser-
mons, collective insurance provision, and the standard concept of a commons. In all of these
cases the participants of a cooperative activity do not affect each other directly through inter-
personal externalities. If a relational economy only has separable cooperatives, we can show
that there exists a strongly stable activity pattern for every hedonic utility profile if and only if

the underlying relational structure exhibits a partial acyclicity property. In particular, relational
economies with an acyclic relational structure and separable cooperatives only are generically
stable.

Second, we investigate relational economies in which cooperatives are potentially non-
separable in the sense that these cooperative activities might generate interpersonal externali-
ties. Non-separable cooperative activities are prevalent in our contemporary service economies
and include open-source software development and information services (e.g., Wikipedia),
health care provision, and higher education. In general, the complexity of interpersonal ex-
ternalities prevents us to identify conditions under which stable activity patterns can emerge.
However, for size-based externalities, we can show that acyclicity of the underlying relational
activity structure is sufficient to guarantee such generic stability. Standard examples of coop-
eratives exhibiting size-based externalities such as congestion and crowding are most highly
used (semi-) public facilities such as beaches and parks on sunny summer days. Under these
conditions, strong stability is, however, infeasible.

For these size-based externalities, our analysis shows that acyclicity of the structure of per-
missible matching activities is sufficient to establish generic stability. Again, this acyclicity
condition can be interpreted as referring to a specific institutional setting of the economy. In
particular, acyclicity is a feature in economies with hierarchical leadership structures. As a con-
sequence, hierarchical leadership organizations can be viewed as integral in the establishment
of stable economic development, a feature that has not yet been pointed out in the literature.

Other non-separable cooperatives might be subject to more complex externalities among
its members. Such examples are health care providers and universities. These conveners bring
together a team of highly trained professionals, in this case health care professionals and faculty,
respectively, and a group of clients, in this case patients and students, respectively. In particular
the team of professionals determines the quality and nature of the services provided through
the cooperative. In these cases of more complex externalities, the existence of stable activity
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patterns can no longer be guaranteed.

The paper is organized as follows. Section 2 introduces our relational approach to pairwise
economic cooperation. Section 3 extends this model to include multi-agent cooperative eco-
nomic activities. Section 4 analyses the emergence of stable interaction patterns if there are no
externalities and Section 5 discusses the implications of the introduction of certain externalities.

2 A relational approach to economic activities

In this section we introduce some basic definitions from social network theory and we establish
the fundamental concepts of our relational approach to economic activities.5 We use network
relationships between economic agents to describe primitive economic interaction, denoted as
economic activities. Thus, our main hypothesis is that economic activities are fundamentally
relational. We pursue a theory founded on purely abstract economic relational activities, with-
out explicit reference to other primitive concepts such as resources, commodities, or production
technologies. Hence, an economic activity is an economic interaction between a group of eco-
nomic agents that generates a hedonic utility value for each of its participants.

We emphasize that in our relational approach none of these various economic activities are
provided through a standard market mechanism. Instead, the economy solely consists of these
economic activities; as such our approach emphasize the cooperative nature of these economic
activities. Such economic activities, of course, include trade: a market is then viewed as a value-
generating cooperative activity. But a market is local rather than general; it is only open to its
members, where potential membership is determined by the underlying structure of potential
trade relationships.

Throughout we work with a finite set of economic agents denoted by N = {1, ..., n}. These
economic agents can engage in three different relational economic activities that generate indi-
vidual values for the participants. The first and most primitive form of economic activity is that
of economic autarky. In this case an agent i ∈ N is self-sufficient and generates a subsistence
level of economic value for Malthusian survival.

The second level of economic activity is that of an economic matching in the sense that
two agents i and j engage into some interaction that generates (hedonic utility) values for both
of these agents. This form of relational activity is purely binary. The most basic of such an
economic matching activity is that of an exchange relationship. Other forms of binary interac-
tions can also be modelled as matchings, including master-apprentice relations, service delivery

5Here we refer to Jackson and Wolinsky (1996), Jackson (2003), Gilles and Sarangi (2008) and Bala and Goyal
(2000) for a comprehensive overview of network theory.
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from a single provider to a single client,6 and families consisting of two parents (as the engaging
agents) and young children.

The third level of economic activity is that of a (relational) cooperative activity in which an
agent is a member of a value-generating coalition of economic agents. The generated economic
value can be based on the provision of a specific club good in the sense of Buchanan (1965) or
by the execution of some coalitional production activity. In our relational approach we apply
a specific relational design to these cooperative activities. We emphasize that the notion of a
cooperative only applies to a relational structure with three or more economic agents.7

We develop this theory in two states. First, we discuss economies with only autarkic and
matching activities, denoted as “matching economies”. Subsequently we introduce cooperative
activities in the developed setting to arrive at a complete model of a “relational economy”.

2.1 Relational economic activities

We first develop a network model of simple economic activities among the agents in N. For an
individual economic agent i ∈ N we denote by ii the agent’s ability to engage autarkically in
home production to survive on a subsistence level denoted by ui(ii) > 0. Thus we arrive at the
class of all permissible autarkic activities denoted by

Γ1 = {ii | i ∈ N}. (1)

Next, consider any i, j ∈ N with i , j. Now we denote by the mathematical expression i j a
binary economic activity involving agents i and j. The binary economic activity i j is called the
matching of agents i and j. We remark here that i j = ji. Note that if i = j, the relational activity
ii represents again the economic autarky of agent i. If i , j, then i j denotes a matching activity
between the two agents i and j. Now we denote

Γ2 ⊆ ΓN = {i j | i, j ∈ N and i , j} (2)

such that for every i ∈ N there is some j ∈ N with i j ∈ Γ2 as the class of the permissible

matching activities. It should be clear that not every potential matching i j ∈ ΓN is necessarily
permissible. Let Γ2 be a given class of permissible matching activities, then Γm = Γ1 ∪ Γ2 is the
resulting structure of permissible simple activities.

6Such service relationships include many simple services such as hair cuts and visits to one’s family physician
or one’s dentist.

7Local markets are exactly examples of such cooperative economic activities. From this perspective, a local
market is simply a group of traders, who gather around some auctioneer, who conducts the trading processes
among the gathered members.
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A permissible matching activity i j ∈ Γ2 has a purely potential nature in the sense that the
participants in the activity i j have to decide to willingly participate in this activity before it is
realized. Since Γ2 is a subset of the set of all possible pairings ΓN , it is designed to capture
physical, institutional, or any other constraints that may prohibit the occurrence of economic
matching activities between certain agents. In this regard the structure Γ2 reflects the relational

trust that is present among the agents in the economy. These restrictions, however, cannot
preclude opting out of the engagement in any economic relationship with others in the sense
that each i ∈ N can always decide to initiate her autarkic activity ii ∈ Γ1. (Such a restriction
would reflect a form of slavery or serfdom.)

Hence, it is essential that the class of permissible autarkic activities Γ1 is taken into account
fully. In terms of our application one can think of the pair (Γ1,Γ2) as the foundation of a social
activity structure in the economy. This introduces the permissible simple activity structure Γm

as defined. Indeed, as stated earlier we refer to an activity as “simple” if it is either an autarky
or a matching activity; this is exactly captured by the structure Γm.

For any sub-structure H ⊆ Γ2 we denote

N(H) = {i ∈ N | There is some j ∈ N such that i j ∈ H} (3)

as the set of economic agents that participate in the matching structure H. Clearly, for every
H ⊆ Γ2, if H , ∅, then N(H) , ∅.

We first discuss some graph theoretic concepts that address the description of features of any
sub-structure of permissible matching activities H ⊆ Γ2.

We define a path between any two distinct agents i ∈ N and j ∈ N in H ⊆ Γ2 as a sequence
of distinct agents Pi j(H) = (i1, i2, . . . , im) with i1 = i, im = j, ik ∈ N and ikik+1 ∈ H for all
k ∈ {1, . . . ,m− 1}. We define a cycle in H to be a path of an agent from herself to herself which
contains at least two other distinct agents, i.e., a cycle in H from i to herself is defined as a path
C = (i1, i2, . . . , im) with i1 = i, im = i, m > 4, ik ∈ N, and ik, ik+1 ∈ H for all k ∈ {1, . . . ,m − 1}.
The length of the cycle C is denoted by `(C) = m − 1 > 3.

A sub-structure H ⊆ Γ2 is called acyclic if H does not contain any cycles. A sub-structure
H ⊆ Γ2 is called odd-acyclic if H does not contain any cycles C ⊂ H of an uneven length `(C).

Furthermore, there may be agents in N between whom there is no path in a set of permissible
matchings Γ2; such agents are located in different components of the structure Γ2. These com-
ponents are exactly the maximally connected sub-structures within Γ2. A sub-structure H ⊆ Γ2

is a component of Γ2 if (1) for all i ∈ N(H) and j ∈ N(H) there is a path Pi j(H) connecting
agents i and j and (2) for all i ∈ N(H) and j ∈ N(H), i j ∈ Γ2 implies that i j ∈ H. The set of
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all components in a network Γ2 is denoted by c(Γ2) = {H | H ⊆ Γ2 is a component }. Note
that as a consequence of the requirements in the definition of a permissible matching structure,
Γ2 = ∪H∈c(Γ2)H.

The location of a player within a network is an important characteristic. Let Γ2 be some
permissible matching structure and let G ⊆ Γm = Γ1 ∪ Γ2 be some structure of permissible
activities. The set of connected agents in structure G is denoted by

N(G) = {i ∈ N | There is some j , i with i j ∈ G}. (4)

Obviously from the definitions it holds that N(Γm) = N(Γ2) = N.
Furthermore, we define agent i’s neighborhood in G as Ni(G) = { j ∈ N | i j ∈ G}. Note here

that if i ∈ Ni(G), agent i’s autarkic activity ii is listed in G, i.e., ii ∈ G. Also, by the definition
of a permissible matching structure, it holds that Ni(Γ2) , ∅ for any i ∈ N. We can also express
the neighborhood of an agent within an arbitrary structure G ⊂ Γm in terms of its link based
analogue, i.e., Li(G) = {i j ∈ G | j ∈ Ni(G)} ⊂ G. For example, Li(Γm) = {ii} ∪ Li(Γ2) is the set
of permissible simple activities that agent i can potentially participate in.

2.2 Institutions and stability in matching economies

Thus far we introduced autarkic and matching activities. Based on these “simple” economic
activities Gilles, Lazarova, and Ruys (2007) introduced the notion of a matching economy. We
present the main insights from this analysis.

Throughout we assume that every individual i ∈ N has complete and transitive preferences
over the permissible simple activities Li(Γm) ⊂ Γm = Γ1 ∪ Γ2 in which she can engage. Thus,
by finiteness of Γm, these preferences can be represented by a hedonic utility function given by
um

i : Li(Γm)→ R. Let um = (um
1 , . . . , u

m
n ) now denote a hedonic utility profile.

Definition 2.1 A matching economy is defined as a triple Em = (N,Γm, um) in which N is a

finite set of individuals, Γm = Γ1 ∪ Γ2 is a permissible simple activity structure on N, and

um
i : Li(Γm)→ R, i ∈ N, is a hedonic utility profile on Γm.

Within the context of a matching economy we investigate stability of an interaction pattern
as the main concept describing an allocation of activities in a matching economy. The main
hypothesis in the definition of stability is that in a matching economy Em each individual i ∈ N

activates exactly one of her permissible matchings in Li(Γm). This hypothesis is founded on the
fact that a matching economy is not endowed with the presence of advanced economic or social
institutions. In such a primitive setting—in which one problem is addressed at a time—it seems
natural to assume that individuals only interact with a single other individual at a time.
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Definition 2.2 A matching pattern in a matching economy Em is a subset of the permissible

activity structure πm ⊂ Γm such that every individual is either paired with exactly one other

individual or remains relationally autarkic, i.e., πm ⊂ Γm is such that |Li(πm)| = |Ni(πm)| = 1,

for all i ∈ N.

We denote by Πm(Γm) = Πm the class of all permissible matching patterns within Γm.

We remark that by the applied hypotheses and definitions, the set of permissible matching
patterns is non-empty. In particular, Γ1 ∈ Πm , ∅. Moreover, according to the assumptions on
Γ2, there exists a sufficient number of other matching patterns in which agent i ∈ N is engaged
with some other agent j , i; indeed, there is some π ∈ Πm with i j ∈ π for any i j ∈ Γ2.

Stability can now be introduced on a matching pattern and is based on the standard assump-
tions of Individual Rationality and a no-blocking condition from matching theory (Roth and
Sotomayor, 1990). Here we refer to this no-blocking condition as “pairwise stability” with ref-
erence to stability in network formation theory, seminally introduced by Jackson and Wolinsky
(1996). This is summarized in the following definition of matching stability:

Definition 2.3 A matching pattern πm ∈ Πm is stable in the matching economy Em = (N,Γm, um)
if all matchings in πm satisfy the individual rationality (IR) and pairwise stability (PS) condi-

tions:

IR um
i (πm) > um

i (ii) for all i ∈ N, where ui(πm) = ui(i j) with i j ∈ πm denotes the utility of agent

i from her unique activity i j in which she participates in the matching pattern πm and

PS there is no blocking matching with regard to πm, i.e., for all i, j ∈ N, i , j, with i j ∈ Γm \ πm:

um
i (i j) > um

i (πm) implies that um
j (i j) 6 um

j (πm). (5)

For an economy to have persistent access to gains from organization, the social structure of
the economy has to generically admit stable matchings. Hence, whatever capabilities and de-
sires of the individuals—represented by their (hedonic) utility functions and (possibly) other
individualistic features—a stable matching pattern has to exist in the matching economy.

Definition 2.4 A structure of permissible simple activities Γm on N is a generically stable if

for every hedonic utility profile um on Γm there exists at least one stable activity pattern in the

matching economy Em = (N,Γm, um).

The term “generic” refers here in principle to a state of socio-economic organization in the
matching structure Γm such that for every pattern of individual capacities—represented by the
hedonic utilities um—there emerges at least one stable matching pattern. Such a generically
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stable matching structure thus reflects that the organizational and institutional structure of the
economy supports stability regardless of the exact individual preferences of the agents in the
economy, i.e.; in this regard it reflects a “healthy” relational structure of the economy, which
promotes and enhances the economic activities selected by the agents in the economy.

The next result identifies the conditions for generic stability.

Theorem 2.5 (Gilles, Lazarova, and Ruys, 2007, Corollary 5.4)
A structure of simple activities Γm = Γ1∪Γ2 on N is generically stable if and only if the matching

structure Γ2 is bipartite in the sense that there exists a partitioning {N1,N2} of N such that

Γ2 ⊆ N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 } . (6)

For a complete proof of this result we refer to Gilles, Lazarova, and Ruys (2007).

The generic existence result Theorem 2.5 has a clear interpretation. Any generically stable
matching structure has to be based on two socio-economic roles such that economic matching
activities can only occur between pairs of agents of different roles. These roles can be indicated
as “demand” and “supply” with reference to an interpretation of Γ2 as a (general) matching
market.

3 The relational economy

Next we expand the scope of our model to include cooperation among multiple economic
agents. These cooperative economic activities essentially represent collectives through which
economic agents interact taking into account the underlying structure of economic relation-
ships. In this regard a cooperative activity can be viewed as a club in the sense of Buchanan
(1965) that is formed between matched individuals only.

Formally, consider a structure of permissible matching activities Γ2 on agent set N. Now,
a cooperative is understood as a certain combination of permissible matchings in Γ2. This is
founded on the idea that agents base their interactions on the simplest building blocks, their
relationships. We assume that a cooperative economic activity is formed around some “con-
vener”. The idea is that a convener brings together a number of economic agents with whom
she already has an established economic relationship—in the form of a permissible matching.
This is formalized as follows:

Definition 3.1 Let Γ2 ⊆ ΓN be a permissible matching structure on N. A cooperative activity—

or simply a “cooperative”—is defined as a sub-structure G ⊆ Γ2 of permissible matchings such
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Figure 1: An example of a permissible matching structure

that |N(G)| > 3 and there is a unique agent i ∈ N(G) such that Ni(G) = N(G) \ {i} and that for

all other agents j ∈ N(G) \ {i} it holds that N j(G) = {i}. The agent i is called the convener of

the cooperative G and denoted by N?(G) ∈ N(G).

A cooperative is constituted of a set of permissible matchings and as such it is seen as a com-
bination of permissible relational activities. Our definition of a cooperative imposes that a
cooperative has at least three member agents.8 Furthermore, a cooperative has an explicit star
structure in the network of permissible matching activities Γ2. This implies that the cooperative
has a relational center, representing a “middleman” or “convener” who essentially binds all con-
stituting matchings of the cooperative. In particular, all matchings that constitute a cooperative
are controlled by its convener.

To illustrate this important definition consider the agent set N = {1, . . . , 8} and the permis-
sible matching structure Γ2 ⊂ ΓN depicted in Figure 1.

The permissible matching structure Γ2 contains two components given as 12345 and 678.
Here the permissible matching activities in this structure are given by Γ2 = {13, 34, 23, 25, 67, 78}.
To illustrate the notion of a cooperative, we refer to G1 = {23, 25} and G2 = {13, 23, 34} as two
examples of such permissible cooperatives. Here the conveners of these cooperatives are given
by N?(G1) = 2 and N?(G2) = 3.

Using the definition of cooperative activities, we can introduce some auxiliary concepts.

Definition 3.2 Let Γ2 ⊆ ΓN be some permissible matching structure.

(a) The collection of all (potential) cooperative activities is now defined by

Σ(Γ2) = {G | G ⊂ Γ2 is a cooperative } (7)
8This distinguishes cooperatives from regular matching activities, i j ∈ Γ2, consisting of two matched agents

only.
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A collection Γ3 ⊆ Σ(Γ) is denoted as a permissible cooperative structure on the structure

of permissible matching activities Γ2.

A triple (Γ1,Γ2,Γ3) is referred to as a permissible activity structure on N consisting of all

autarkies G1 ∈ Γ1, permissible matchings G2 ∈ Γ2, and permissible cooperatives G3 ∈ Γ3.

The union of a permissible activity structure, Γ = Γ1 ∪ Γ2 ∪ Γ3, serves as its alternative

description.

(b) Let Γ3 ⊆ Σ(Γ2) be some permissible cooperative activity structure. The set of conveners
in Γ3 is defined by

N?(Γ3) = {i ∈ N | i = N?(G) for some G ∈ Γ3}. (8)

In Figure 1 a permissible cooperative structure can be selected and listed9 as

Γ3 = {3124, 342, 768}  Σ(Γ2) = {235, 3124, 312, 324, 314, 768}.

The set of conveners in Γ3 can now be computed as

N?(Γ3) = {i ∈ N | i is the convener of some cooperative G ∈ Γ3} = {3, 7} ⊂ N.

Let Γ = Γ1 ∪ Γ2 ∪ Γ3 be a permissible economic activity structure on the agent set N. An
agent i ∈ N has complete and transitive preferences over the activities in which he or she
potentially can participate. We assume that these preferences can be represented by a hedonic
utility function. The hedonic utility function is in principle an indirect utility function that
captures the utility of the value generating activities.

LetAi(Γ) be the set of all permissible activities in which agent i participates. Formally, for
i ∈ N we introduce

Ai(Γ) = {ii} ∪ {i j | i j ∈ Γ2} ∪ {G | G ∈ Γ3 is a cooperative and i ∈ N(G) }. (9)

For every economic agent i ∈ N, preferences are now introduced through the hedonic utility
function ui : Ai(Γ) → R. Let u = (u1, . . . , un) be a profile of hedonic utility functions for all
agents in N. LetU be the set of all profiles of hedonic utility functions on Γ.

We now have introduced the fundamental notions needed to define a relational economy
with cooperative economic activities. Such an economy is defined to be the set of permissible

9Here we use shorthand notation in the form of triplets i jh to denote a permissible cooperative consisting of the
three agents i, j and h, where i acts as its convener. Similarly we use the quadruplet i jhk to describe a four-agent
cooperative with convener i.
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relational activities (autarky, matchings, and cooperatives) and a hedonic utility function that
assigns a value to every agent in each of these permissible activities. This is formalized as
follows.

Definition 3.3 A relational economy is introduced as a triple E = (N,Γ, u) in which N is a

finite set of economic agents, Γ = Γ1 ∪ Γ2 ∪ Γ3 is a permissible activity structure on N, and

u ∈ U is a profile of hedonic utility functions with for every i ∈ N that ui : Ai(Γ)→ R.

Finally we address an equilibrium concept for such relational economies. To analyze stability
we again adapt the notion of pairwise stability in the same fashion as formalized for matching
economies in Definition 2.3.

Definition 3.4 Let E = (N,Γ, u) be a relational economy and let Γ = Γ1 ∪ Γ2 ∪ Γ3 be the

corresponding permissible activity structure.

(a) A listing Λ = (G1, . . . ,Gm) is an activity pattern in Γ if Gp ∈ Γ for all p ∈ {1, . . . ,m},
N(Gp) ∩ N(Gq) = ∅ for all p , q, and ∪m

p=1N(Gp) = N. (Noting that N(ii) = {i} for all

ii ∈ Γ1.) We denote the family of all activity patterns in Γ by P(Γ).

(b) The activity pattern Λ? = (G?
1 , . . . ,G

?
m) ∈ P(Γ) is stable in the economy E if for every

p ∈ {1, . . . ,m} the activity G?
p ∈ Λ? satisfies the individual rationality [IR] and two

pairwise stability conditions [PS] and [PS*] as specified below:

IR for all i ∈ N(G?
p ) it holds that ui(G?

p ) > ui(ii);

PS for all distinct agents i ∈ N(G?
p ) and j ∈ N(G?

q ) with q ∈ {1, . . . ,m} and i j < Γ2 ∩G?
p :

ui(i j) > ui(G?
p ) implies u j(i j) 6 u j(G?

q ); (10)

PS* and for all distinct agents i ∈ N(G?
p ) and j ∈ N(G?

q ) with q ∈ {1, . . . ,m} with i j ∈ Γ2,

i j < G?
p ∩G?

q and either j ∈ N?(G?
q ) or G?

q ∈ Γ2:

ui(G?
q ∪ {i j}) > ui(G?

p ) implies u j(G?
q ∪ {i j}) 6 u j(G?

p ). (11)

(c) The activity pattern Λ? = (G?
1 , . . . ,G

?
m) ∈ P(Γ) is strongly stable in the economy E if Λ?

is stable in E and for every p ∈ {1, . . . ,m} the activity G?
p ∈ Λ? satisfies additionally the

following Reduction Proofness condition [RP]:

RP If G?
p is a cooperative economic activity, i.e., G?

p ∈ Γ3 ∩ Λ?, it holds that for every

sub-structure G ⊂ G?
p

ui(G) 6 ui(G?
p ) (12)
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where i = N?(G?
p ) is the convener of that cooperative economic activity.

An activity pattern is an assignment of exactly one activity to every economic agent. As for the
case of matching economies, it is again assumed that agents participate only in a single activity.
An activity pattern is defined to be stable if it satisfies certain standard stability conditions from
game theory, in particular matching theory (Roth and Sotomayor, 1990), network formation
theory (Jackson and Wolinsky, 1996), and core theory for Tiebout and club economies (Gilles
and Scotchmer, 1997).

The condition IR is a standard individual rationality condition that allows an individual to
opt out of an economic activity if she is better off being autarkic. The first pairwise stability
condition PS rules out blocking opportunities for pairs of agents who are not connected to each
other in the same cooperative. It requires that there are no pairs of such agents who prefer to be
linked to each other rather than to the agents with whom their are linked in the present activity
pattern. Condition PS has already been applied in Definition 2.3 of a stable matching pattern
for matching economies.

The second pairwise stability condition PS* rules out blocking opportunities for pairs of
agents at least one of whom can add a link without severing his existing links in the present
activity pattern. Hence, such an agent is either a convener in the present pattern or is linked in a
matching with another distinct agent and not member of a cooperative. This condition requires
that there are no two distinct agents who want to be linked to each other in a cooperative in
which one of them is a convener.10

Both PS and PS* are concerned with the re-structuring of the prevailing activity pattern.
These conditions still do not allow the convener of a cooperative to block access to this co-
operative by third parties if it is to their gain. Hence, stability of an activity pattern defines a
notion of cooperatives that are principally “open” in the sense that any outsider can join the co-
operative. There are numerous cooperative activities that satisfy the principle of openness such
as trading posts (stores) and markets, open source communities, and many economic service
provision cooperatives (clubs). In most of these cases, if entrants follow the house rules of the
cooperative in question, they will not be excluded from participation.

The stronger notion of strong stability excludes the possibility of open cooperative activi-
ties. Condition RP explicitly “closes” a cooperative in the sense that the convener is allowed
to exclude participation of third parties based on her own preferences. In economic practice
we encounter many of such closed cooperatives as well. We mention many team production
situations (e.g., health care provision) and exclusive clubs (guilds and unions).

10Note that a convener and an agent linked in a matching with another distinct agent have multiple blocking
opportunities available: such agents can add a link with or without severing their current links. Such agents are
subject to both (no blocking) conditions PS and PS*.
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Under (regular) stability, a convener is merely a coordinator of a cooperative economic
activity who is open to participation, while under strong stability a convener is considered to be
a manager of the cooperative activity under consideration. We emphasize that strong stability
implies stability, i.e., management implies coordination, but that the reverse is not true.

4 Separability: The absence of externalities

After having established a theory of relational economic activities, we investigate the existence
of equilibria in these economies in the form of stable activity patterns. We have to distinguish
two types of relational economies: economies with relational externalities affecting the perfor-
mance of cooperatives and economies without such relational externalities. We first investigate
economies without relational externalities. Such economies are denoted as “separable”.

Definition 4.1 Let E = (N,Γ, u) be a relational economy.

(i) The hedonic utility function ui : Ai(Γ) → R exhibits no (cooperative) externalities if for

all Gi ∈ Ai(Γ) and Hi ∈ Ai(Γ) with Ni(Gi) = Ni(Hi), it holds that ui(Gi) = ui(Hi).
The collection of all utility profiles exhibiting no externalities is denoted byUn ⊂ U.

(ii) The relational economy E = (N,Γ, u) is separable if ui ∈ Un for every agent i ∈ N.

The non-externality property on a hedonic utility function imposes that an agent derives value
only from matchings with agents with whom she is linked directly. Thus, changes in coop-
eratives regarding third parties do not affect the hedonic utility value of a member of that co-
operative. Although this seems to be a very severe condition, it is a common assumption in
traditional public economics, where the public good itself acts as a convener in our terms.11

Besides separability, we introduce a second property that hedonic utility functions have to
satisfy. This is the standard superadditivity condition.

Definition 4.2 Let Γ be a permissible activity structure on N. For agent i ∈ N, the hedonic

utility function ui : Ai(Γ) → R is superadditive if for any Gi ∈ Ai(Γ) and Hi ∈ Ai(Γ) with

Gi ∪ Hi ∈ Ai(Γ) and Gi ∩ Hi = ∅ it holds that ui(Gi ∪ Hi) > ui(Gi) + ui(Hi).
Furthermore, we say that a utility profile u ∈ U on Γ is superadditive if the hedonic utility

function ui is superadditive for every agent i ∈ N. The collection of all superadditive utility

profiles is denoted byUs ⊂ U.
11In this regard if all cooperatives exhibit such non-externalities towards its members, the activities represented

through these cooperatives are separable and, thus, can in principle be evaluated objectively. This is the principle
of pricing membership of clubs in a club economy (Gilles and Scotchmer, 1997), or the Samuelson conditions in
the efficient provision of a pure public good (Samuelson, 1954).
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The superadditivity property reflects synergies which are assumed to be allocated to the central
agent who acts as a coordinator in the value generation process.

4.1 Generic stability under separability

Within the context of separable relational economies we address the generic existence of stable
activity patterns. This refers to the existence of such a stable activity pattern for any hedonic
utility profile exhibiting no externalities. Formally, we define the permissible activity structure
Γ = Γ1∪Γ2∪Γ3 to be generically stable if it admits a stable activity pattern for every permissible
hedonic utility profile u on Γ.

Definition 4.3 Let Γ = Γ1 ∪ Γ2 ∪ Γ3 be a permissible activity structure such that Γ3 = Σ(Γ2)
and let U? ⊆ U be some given class of permissible utility profiles on the permissible activity

structure Γ. The permissible activity structure Γ is generically (strongly) stable on the class

U? if for every utility profile u ∈ U? there exists a (strongly) stable activity pattern Λ? in the

relational economy E = (N,Γ, u).

We denote byU = Us∩Un the class of all hedonic utility profiles that satisfy the superadditivity
as well as the non-externality properties.

Theorem 4.4 The permissible activity structure Γ = Γ1∪Γ2∪Γ3 with Γ3 = Σ(Γ2) is generically

strongly stable on the classU of superadditive hedonic utility profiles exhibiting no externalities

if and only if the permissible matching structure Γ2 is acyclic or only contains cycles C ⊂ Γ2

with length `(C) = 3s where s ∈ {1, 2, . . .}.

The proof of Theorem 4.4 is given in Appendix A.

Theorem 4.4 states that under some regularity conditions, a permissible activity structure is
generically strongly stable for hedonic utility profiles without externalities if and only if the
relational structure exhibits a certain acyclicity property. Unfortunately, the partial acyclicity
condition on the permissible activity structure stated in the assertion has no convenient or obvi-
ous interpretation, in contrast to the condition stated in Theorem 2.5. However, from Theorem
4.4 we may derive some more directly interpretable conclusions. In particular, if the relational
structure is acyclic, then the permissible activity structure is generically stable for utility profiles
exhibiting no externalities.

Corollary 4.5 If the permissible matching structure Γ2 is acyclic, then the permissible activity

structure Γ = Γ1 ∪ Γ2 ∪ Γ3 with Γ3 = Σ(Γ2) is generically strongly stable on the class U of

superadditive hedonic utility profiles exhibiting no externalities.
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One particular interesting class of acyclic permissible matching structures is that of the hierar-

chical structures. Within a hierarchical structure, multiple levels can be distinguished in which
agents in a certain level can only communicate with agents in lower and higher levels. It is
well-accepted that hierarchical structures are common institutional features of any contempo-
rary society. In particular, social roles are usually assigned to correspond to the various levels
within the hierarchical power structure in the economic and political sphere of a society.

The main conclusion from the assertion stated in the corollary is that if a society is hierar-
chically structured, it is generically strongly stable. In this regard a hierarchical organization
structure is a “mode of governance” and as such the corresponding social role and authority
patterns steer the society towards a (strongly) stable state. As such, a hierarchical organization
of a society supports and promotes economic development and stability.

4.2 Examples of separable cooperatives

We illustrate the abstract theoretical discussion with some practical examples of cooperatives
that exhibit the non-externality condition imposed above. This implies that such cooperatives
are not affected by size and other third-party externalities for the value extracted by mem-
bers other than the convener. A surprising large number of institutions in our contemporary
economies satisfy this rather strict condition. We discuss some of these in no particular order
and compare the standard view with our relational approach.

Church service. A church organization, when restricted to its traditional services, is a prime
example of a separable and open cooperative. Here, agents are natural persons only. The
pastor of the church acts as its convener, while the parishioners obtain economic values
only from a direct interaction with the pastor. In this reduced approach the value of a
church visit of a parishioner only emanates from the sermon delivered by the pastor. In
this regard a church is thus a cooperative in which there are no direct externalities among
the parishioners. It rarely happens that parishioners are excommunication; if parishioners
submit to the rules of conduct, they will not be excluded from the services. As such
a church is an open cooperative, i.e., its convener (pastor) does not explicitly exclude
members from participation even if the pastor obtains a lower hedonic utility due to their
participation.
We contrast this view with the traditional perspective of the church as a firm (Ekelund,
Hébert, and Tollison, 1989). In this view churches provide services in a particular market
and many activities of parishioners are interpreted from a purely market perspective. For
example, cathedral building can be interpreted as an entry deterrent (Bercea, Ekelund, and
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Tollison, 2005). However, cathedral building can also be interpreted as a core activity of
the relational cooperative that forms the church-going community.

The commons. The standard view of a commons is that it is a local public good provided to
the members of a community. Examples are public parks, infrastructure, and local gov-
ernment agencies. For a traditional theoretical approach to the problem of the provision
of a commons we refer to, e.g., Falk, Fehr, and Fischbacher (2001).
Here we argue that the relational view defining a commons as a separable and open co-
operative is required for stability in the traditional theory of the commons problem. First,
in our approach the commons is represented as an economic cooperative. Indeed, the
convener is simply the local authority that provides a common service and the members
of the cooperative are the users of that service. (In this regard, the convener may also be
an appointed or elected official.) Only members of the local community have potential
access to the commons, and as such this can be represented in the permissible matching
structure Γ2, where ic ∈ Γ2 if i is a member of the community c. (Here c represents the
convener for the provision of the commons.) The decision to participate is made solely
by the community member; the convener will only deny access to the commons if there is
misconduct. Thus, each community member decides to participate or not after receiving
institutional information about the convener and the quality of the service provided.
The cooperative formed by c and certain community members i ∈ Nc(Γ2) is separable
under the standard assumptions. The number of actual users of the commons is usually
not assumed to affect the utility enjoyed by a member i who uses the commons.
Second, the main difference with the standard view of a commons as a pure public good
is the reciprocity of the relational structure. A commons generates (directed) utility from
the convener as the maintainer of that commons, and allows for free-riding if it is not
managed satisfactorily. As such, free-riding is a consequence of managerial qualities in
the cooperative.

Insurance provision. A special case of a separable commons provision is that of financial loss
insurance. In this case the insurance provider is the convener of the cooperative in ques-
tion and its members are the policy holders. The policy holders bring in capital through
their contributed premiums to cover potential financial losses of certain policy holders
from calamities.
First, we argue that the collective of an insurance provider and her clients can be described
as a separable cooperative. The direct relation between the insurance provider and a client
is focused on the characteristics of both of them, as expressed by the insurer’s policy and
the member’s risks profile. Their relation may be a unique one, based on trust or private
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information, but it is a separable cooperative only as far as the member’s activities do not
influence the provider’s policy towards all other members.
Second, according to the standard view, the insurer’s policy is a given offer—comparable
to offers by other insurance companies—to a market of anonymous insurance searchers.
An insurance searcher selects subjectively the best offer. Both parties know that they can
act strategically, but this behavior is not typical for a specific insured party, it applies
to all. The neoclassical framework ignores the role of non-market social interactions in
determining individual and collective behavior and in shaping economic and social out-
comes.12 This standard view compares to the relational view in that both are separable,
but the standard view implies additional requirements, in particular the anonymity of
the parties’ properties. These extra requirements facilitate institutional arrangements, of
course, such as the market mechanism.
Third, these additional conditions may not be fitting with other cultures. Such societies
have sought solutions that fit the relational framework rather than the traditional view-
point. We discuss the local solutions, as is suggested by the example of the Mahber

system in East Africa.
A Mahber is an informal association where members of non-kinsmen participate in com-
munion. Each member of the Mahber makes a periodic contribution of a specific amount
of money and benefits are paid out to members in money, or in kind, in the event of the
loss of a job, an accident, illness or death. Mahber provides also financial credits to its
members at times when they face serious crises. The logic of joining Mahber has more to
do with reciprocity and credit systems in that everyone expects to receive benefits some-
time during her/his membership.
The question addressed in Habtom and Ruys (2007) is whether—in the absence of health
insurance and other formal safety nets—the traditional Eritrean community can transform
and extend the traditional Mahber system to cover also unexpected costs of health care
and related social costs. To answer this question four central aspects of social capital
are used in the analysis: relations of trust; reciprocity and exchanges; common rules,
norms and sanctions; connectedness, networks and groups. Our concept of a separable
cooperative fits this type of analysis.

Trading posts. Trading posts are important elements of the trade infrastructure in our contem-
porary economies. These trading posts usually assume the form of stores, shopping malls,
and local markets. We argue here that such a trading post can be viewed as a separable

12In the real world, there are many examples of how individual and collective behavior is shaped by non-market
social influences in the form of culture, norms, and social structure. The central idea of social capital reflects this
since this concept incorporates that social networks are valuable assets (Bourdieu and Wacquant, 1992).
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as well as open cooperative. The convener is the owner of the trading post—in the form
of a store or local market. She announces which commodities will be traded and initiates
contacts with potential providers of these commodities. Demanders for these commodi-
ties join the trading post and indirectly trade with the providers of these commodities.
The trading post is “open” in the sense that any potential customer has access; the con-
vener will rarely deny access to the trading post. In principle there are no externalities
assumed in this trading process and, thus, there are no externalities emanating from the
interactions between the various members of the trading post.
Furthermore, this description of a trading post explicitly puts it into the context of a larger
relational context. The convener is assumed to have explicit permissible relationships
with the providers and demanders will only access those trading posts that are available
in their locality. As such the trade infrastructure has an explicit spatial dimension, which
is described in the permissible matching structure Γ2.13

The relational approach to trade infrastructure also conforms with relationship-building
of a retailer with its clients through information gathering regarding the purchasing be-
havior of each client. This is now standard practice for online retailers such as Ama-
zon.com and for supermarket retailers through a system of “bonus cards”. In these cases
the retailer-client relationship is strengthened through targeted advertising and promo-
tions.

The examples of separable cooperatives are only a few of the numerous economic institutions
and structures that have been devised throughout history to facilitate certain economic activities.
From our discussion it should be clear that we view these cooperatives as semi-public entities
and as such the club nature of these cooperatives is emphasized.

5 Non-separability: Introducing externalities

Next we address the question under which conditions stable activities patterns emerge in the
presence of externalities. From our analysis we conclude that different types of externalities
result in different stability requirements. Consequently a varied picture emerges in which a
case-based approach is more fruitful than a general one.

We investigate two prevalent types of externalities related to cooperative economic activ-
ities. The first one is a simple size-based formulation of externalities. The more members a

13For elaborations on these points of trading post owners as conveners or “middlemen” in a trade process or
infrastructure we also refer to Bose and Pingle (1995) and Rubinstein and Wolinsky (1987). We refer to Dia-
mantaras, Gilles, and Ruys (2003) and Gilles and Diamantaras (2003) for further discussion and modeling of the
provision of such trade infrastructures as a collective good problem.
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cooperative has, the more it affects the resulting value for its members. Such size-based ex-
ternalities are very common as every bounded facility is subject to crowding. In the literature
on Tiebout and club economies such crowding externalities have been investigated extensively.
We refer here to the seminal paper by Conley and Wooders (1997) and the subsequent work by
Conley and Konishi (2002). For the case of size-based externalities we are able to state a rather
general result concerning existence of stable activity patterns.

A second type of externalities are the ones based on the hedonic utility values generated.
Here the externality is related to the difference of the convener’s extracted value from the co-
operative and all its other members. This refers to the notion of envy and equal treatment as
the underlying source of such externalities. For a general theoretical treatment of such exter-
nalities we refer to the seminal paper Fehr and Schmidt (1999). Unfortunately, even for rather
specific formulations of such value-based externalities, we cannot provide a general statement
concerning the existence of stable activity patterns.

5.1 Size-based externalities

For utility profiles with size-based externalities, the number of agents in a cooperative is deter-
mining the size of the externality. The identity of the convener of the cooperative determines
whether the externality is positive or negative, but the identity of the remainder of the coopera-
tive membership is irrelevant for the amount of externality generated.

Definition 5.1 Let E = (N,Γ, u) be a relational economy with Γ3 = Σ(Γ2). Then the utility

function u exhibits a (linear) size-based externality if for every cooperative G ∈ Γ3 :

ui(G) =
∑

j∈Ni(G)

ui(i j) + αc · [ #N(G) − 2 ] (13)

for all i ∈ N(G), where c = N∗(G) and αc ∈ R.

If a convener c has an externality parameter αc > 0, she brings about a positive externality in
the cooperative. This refers to “economies to club size” based on the total size of the coop-
erative gathered around this convener. If, on the other hand, this convener has an externality
parameter αc < 0, she causes a negative externality in the cooperative. This can be referred to
as “crowding” (Conley and Wooders, 1997).

First we report that there exist relational economies exhibiting size-based externalities in
which there is no stable activity pattern. An example is presented below.

Example 5.2 Let N = {1, 2, 3, 4} and Γ2 = {12, 23, 34}. Let α2 = 200 and α3 = −50. Let
the utility function be such that u1(12) = u2(22) = u3(33) = −100, u1(11) = u2(12) = 0,
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u2(23) = u4(34) = 100, u4(44) = 90, u3(23) = 60, and u3(34) = 300. Using the linear size-
based externality function, we can compute the utility levels in the two possible cooperatives
213 and 314 in a straightforward manner: u1(213) = 100, u2(213) = 300, u3(213) = 260,
u2(314) = 50, u3(324) = 310, and u4(324) = 50.
We now claim that in this example there is no stable activity pattern. First, consider the activity
pattern (12, 34). It is not stable because [PS*] is not satisfied: 50 = u2(324) > u2(12) = 0
and 310 = u3(324) > u3(34) = 300. Also, since −100 = u2(22) < u2(12) = 0, the activity
pattern (11, 22, 34) is not stable either. Next, consider (1, 324), which is not stable since [IR]
for agent 4 is not satisfied: 50 = u4(324) < u4(44) = 90. Moving on, (11, 23, 44) is not stable
due to a violation of [PS*]: 0 = u1(11) < u1(213) = 100 and 100 = u2(23) < u2(213) = 300.
Finally, (213, 44) is not stable due to a violation of [PS]: 260 = u3(213) < u3(34) = 300
and 90 = u4(44) < u4(34) = 100. Using the same reasoning, we find that (12, 33, 44) and
(11, 22, 33, 44) are not stable as well. �

Second, stable activity patterns may not exist even when we impose uniform linear size-based
externalities on all conveners. The following two examples illustrate this point. The first exam-
ple imposes uniform, but negative, size-based externalities.

Example 5.3 Let N = {1, 2, 3} and let Γ2 = {12, 23}. Now consider α2 = −2. Let the utility
function be such that ui(ii) = 0 for all i = 1, 2, 3 and u3(23) = 1, u1(12) = u2(12) = 3 and
u2(23) = 4. Using the linear size-based externality function, we can now compute the utility
levels in the cooperative 213 in a straightforward manner: u1(213) = 1, u3(213) = −1, and
u2(213) = 4.We now claim that there is no stable activity pattern in this economy.
To show this, first, consider (12, 33). This activity pattern is not stable due to a violation of
[PS]: 3 = u2(12) < u2(23) = 4 and 0 = u3(33) < u3(23) = 1. Similarly (11, 22, 33) is not
stable. Next, (11, 23) is not stable due to a violation of [PS*]: 0 = u1(11) < u1(213) = 1 and
4 = u2(23) < u2(213) = 5. Finally, (213) is not stable due to a violation of [IR] for agent 3:
−1 = u3(213) < u3(33) = 0. �

Finally, we consider a 5-agent circular permissible matching structure. Here, uniformity of the
the size-based externality for conveners is positive. However, the emergence of a Condorcet-
like cycle in the economy prevents the desired stability.

Example 5.4 Let N = {1, 2, 3, 4, 5} and let Γ2 = {12, 15, 23, 34, 45}. Furthermore, let αc =

α = 2 for all potential conveners c ∈ N?
(
Σ(Γ2)

)
= N. The utility levels for each matching is

given as follows: ui(ii) = 0 for all i ∈ N, u1(12) = u2(23) = u3(34) = u4(45) = 2, u1(15) =

u2(12) = u3(23) = u4(34) = u5(45) = 10 and u5(15) = −1. The utility levels in all possible
cooperatives are computed in a straightforward manner from the linear size-based externality
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function: u5(125) = 1, u1(213) = u2(324) = u3(435) = u4(514) = 4, u5(514) = 11, u1(514) =

u2(125) = u3(213) = u4(324) = u5(435) = 12, and u1(125) = u2(213) = u3(324) = u4(435) =

14. We now claim that also in this example there is no stable activity structure. �

We conclude from these three examples that size-based externalities prevent the emergence
of a stable activity pattern if there are non-uniform externalities, there are negative size-based
externalities, or there are cycles in Γ2. However, if these three conditions are excluded, stability
can still be established.

Theorem 5.5 Let E = (N,Γ, u) be a relational economy such that Γ3 = Σ(Γ2) and u exhibits

size-based externalities such that αc = α > 0 for all potential conveners c ∈ N?
(
Γ3

)
. If Γ2 is

acyclic, then E admits a stable activity pattern.

For a proof of this existence result we refer to Appendix B of this paper.

This assertion cannot be strengthened to cover strong stability rather than regular stability.
The next example devices a simple case satisfying the conditions of Theorem 5.5 in which
no strongly stable activity pattern can be constructed.

Example 5.6 Let N = {1, 2, 3}. Consider the permissible matching structure Γ2 = {12, 23} and
the resulting permissible cooperative structure Γ3 = Σ(Γ2) = {213}. We consider the hedonic
utility profile with size-based externalities generated by α = 2 and u1(11) = u3(33) = 0,
u2(22) = −4, u1(12) = u2(23) = −3, and u2(12) = u3(23) = 1. Now we derive that u1(213) =

−1 + 2 = 1, u2(213) = 1 − 3 + 2 = 0, and u3(213) = 1 + 2 = 3.
We now check that in this economy there is no strongly stable activity pattern: Λ1 = {11, 23} is
not stable since agent 1 wants to join agent 2 in the cooperative 213 and its convener, agent 2,
agrees; Λ2 = {12, 33} is not stable since IR is not satisfied for agent 1; Λ3 = {213} is not strongly
stable since its convener, agent 2, will prefer 12 over 213 and thus severs the participation of
agent 3; and λ4 = {11, 22, 33} is not stable since agents 2 and 3 prefer the matching 23 over
being autarkic.
Although there is no strongly stable activity pattern in this relational economy, Λ3 = {213}
forms a regularly stable activity pattern. �

Example 5.6 confirms that the presence of simple size-based externalities prevents the emer-
gence of strongly stable activity patterns. Thus, in the presence of externalities only economies
with “open” cooperative economic activities can achieve stability.
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5.2 Other types of externalities

We have shown in our previous discussion that under certain size-based externalities it is still
possible to establish stable activity patterns. However, size-based externalities form a rather
specific category, with significant differences from other types of externalities. In this section
we investigate various examples of surplus based externalities such as envy that show that in
general it is not possible to establish existence of stable activity patterns. The purpose of these
examples is to point out that, generally, stability cannot be established under other types of
externalities.

Definition 5.7 The utility function u exhibits a surplus based externality if for every coopera-

tive G ∈ Γ3 and every member i ∈ N(G), her utility function ui is of the form given by

ui(G) =
∑

j∈Ni(G)

ui(i j) +
1

#N(G)
·

 uc(G) −
∑

j∈N(G)

u j(c j)

 (14)

where c = N?(G) is G’s convener and uc(G) ∈ R is the hedonic utility of this convener c from

participating in G.

The next example shows that there are relational economies exhibiting surplus based externali-
ties with equal division, in which there is no stable activity pattern.

Example 5.8 Let N = {1, 2, 3} and let Γ2 = {12, 23}. Let the utility function be such that
u1(11) = 9, u2(22) = u3(33) = 0, u1(12) = u2(12) = 10, u2(23) = u3(23) = 7, and u2(213) = 11.
The utility levels for agents 2 and 3 in the cooperative 213 are calculated in a straightforward
fashion to be u1(213) = 8 and u3(213) = 5. It can easily be determined that in this economy
there is no stable activity pattern. �

From the example of a relational economy exhibiting surplus based externalities, it is clear
that the establishment of stable activity patterns in relational economies with non-size-based
externalities requires careful case-based analysis.

5.3 Examples of non-separable cooperatives

The examples of relational economies with non-separable cooperatives discussed thus far have
had a purely theoretical nature. However, in our contemporary economies there are numer-
ous institutions and organizations that exhibit the properties of cooperatives with externalities
among its members. Here we discuss some important cases.
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Open source communities. Online communities have been established for the development
and provision of open source projects such as Wikipedia (Anthony, Smith, and Williamson,
2007) and Linux. The commonality of these online resources is that they are provided
through voluntary contributions from members of online communities established for the
specific purpose of the resource at hand.
The traditional way to view the emergence of open source software is that these systems
are able to solve problems caused by strategic behavior of agents. These agents have
private information about their abilities, which must somehow be communicated to the
financier of the network enabling him to decide whether to start the network and whom
to engage. They decide positively when the screening costs are sufficiently low (Prüfer,
2006). For further discussion and issues concerning open source production we refer also
to Johnson (2002) and Lerner and Tirole (2002).
We argue that these open source online communities are essentially non-separable coop-
eratives. The convener is usually a person who takes the initiative for the development
of the resource in question such as Jimmy Wales in the creation of Wikipedia and Linus
Thorvald in the case of the development of Linux. The members who make voluntary
contributions to the open source project, in this regard gather around the convener. Over
time the resource grows organically in a process of development through voluntary contri-
butions by the members of the community. The relational view focuses on the production
externalities obtained from participation. In contrast to the traditional view, it also allows
for voluntary membership and participation.
Even though open source communities are non-separable, they are prime examples of
open cooperatives. Indeed, anyone who makes a contribution is considered a full par-
ticipant of the community. This is most striking in the Wikipedia project where even
malicious “contributions” can be made. A form of self-policing has emerged to counter
such destructive behavior.

Hometown associations. Hometown associations refer to groups of people who descend from
the same village. An association helps to keep people in touch by creating a social space
with others coming from the same village and having the same identity, yet living in ur-
ban areas. Members of the association contribute a fixed amount of money periodically
(monthly). Such hometown associations are founded on communal bonds and the so-
cial capital that is historically created in the community.14 These associations are used
as a safety net beside their social and economic benefits, promote social relations, and

14Social capital generally refers to trust, concern for ones associates, a willingness to live by the norms of one’s
community and to punish those who do not (Bowles and Gintis, 2002).
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strengthen ties among people with a common identity. These hometown associations
also develop reciprocity and exchange among members, provide financial and material
assistance for common festivities (e.g. wedding and other ceremonies), and provide fi-
nancial assistance to the ailing and to the families of the deceased member.
A common function of hometown associations is to provide health insurance schemes to
its members. Community-based micro-insurance has aroused much interest and hope in
meeting health care challenges facing the poor; micro-insurance is considered to be an
important financing tool for protecting the poor from adverse financial consequences in
the event of sickness. Several types of community-based health insurance schemes have
emerged in sub-Saharan Africa (Wiesmann and Jutting, 2000), Asia (Krause, 2000), and
in other regions. Many people in these regions simply do not understand the concept of
insurance. It takes time to explain insurance and risk sharing. The idea of handing over
money that will be used to pay for other peoples’ health care is hard to explain and to
absorb. Under these circumstances standard insurance solutions might not work, while
hometown associations provide a more secure remedy.

Health care providers. In our contemporary economies, the health care sector is of very sig-
nificant importance. Health care services are provided through complex networks of
professional organizations such as networks of family practitioners, regional hospitals,
and academic research hospitals. We argue that these health care organizations can be
viewed as cooperative economic activities in the context of a relational economy.
Indeed, the convener of a health care organization in this case is the management or-
ganization that brings together a team of health care professionals and a set of patients
to generate economic values for all participants. We remark that such a team of health
care professionals in fact acts as a “production team” in the sense of Marshak (1955). It
provides services to patients, who also have to be considered explicitly to be member of
the health care organization. Thus, we arrive at a view of a health care organization as a
cooperative in the sense of our theory.
We recognize that there are significant externalities within a cooperative representing a
health care organization. Indeed, each team of health care professionals generates the
specific characteristics of the health care services provided to the patients. Such a team
imposes a certain quality standard backed up by a certain reputation of the health care or-
ganization as a whole. Patients respond to these characteristics and the economic values
generated within the organization are significantly impacted by these characteristics.
On the other hand, health care provision is done through “closed” cooperatives. The con-
vener is able to prevent access of certain members if necessary. in practice this is done
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through dismissal and non-renewal of contracts.

6 Some concluding remarks

The main practical contribution of this paper consists of designing a basic framework for rela-
tional value-systems in economics. We derive proto-institutional properties for that framework,
which are used as benchmark for concrete, specific institutional arrangements. It is evident that,
if these values diverge, problems will arise. Institutional innovation causes convergence of these
values. The intricate relationship between the two views has to be scrutinized continuously in
order to stabilize the economy and society.

There is a significant link with the work of Burt (1992) on structural holes and the devel-
oped relational framework of economic activities. According to Burt, optimizing the number
of nonredundant contacts is a way to increase the efficiency of a social network: while the
presence of cycles allows for at least two distinct paths between two distinct individuals, in
the absence of cycles, there is at most one path between any two distinct individuals. Thus, in
an acyclic structure one does not support links that provide the same accessibility. Given that
the generation and maintenance of links is costly, a structure without cycles is more efficient
than such in which cycles are present. Last, we should mention some limitations of our general
framework. In particular, in our work we focus on very special class of activity patterns, which
consists of star structures. For complex production processes, such as hierarchies of several
levels, predominant in today’s economic world, these tools are inadequate. A clear goal for
future work is the development of a framework where more complex patterns can be analyzed.
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A Appendix: Proof of Theorem 4.4
The following Lemma states an intermediate result that is required for the proof of existence of
a strongly stable activity pattern in a relational economy without any externalities.
Throughout we let E = (N,Γ, u) be some relational economy. As before let Γm = Γ1 ∪ Γ2 be
a structure of feasible simple activities on N and let u ∈ U be an arbitrary profile of utility
functions, we denote by

Bi(Γm, u) = { j ∈ N | i j ∈ Γm and ui(i j) ≥ ui(ik) for all k ∈ N with ik ∈ Γm } (15)

the set of most preferred partners of agent i for all i ∈ N.15

Lemma 1 Let the feasible matching structure Γ2 be acyclic. Then there is an agent i ∈ N such
that i ∈ Bi(Γm, u) and/or there is a pair of agents i, j ∈ N with i , j such that j ∈ Bi(Γm, u) and
i ∈ B j(Γm, u).

Proof. If there is some agent i ∈ N with i ∈ Bi(Γm, u) the assertion is obviously valid. Next
assume that for every agent i ∈ N it holds that i < Bi(Γm, u) and the second part of the assertion
is not true. Then for all agents i, j ∈ N with i , j such that j ∈ Bi(Γm, u) it holds that i <
B j(Γm, u). Consider agent i ∈ N and without loss of generality we may assume that the set
of most preferred agents is a singleton, i.e., Bi(Γm, u) = { j}. So, it must hold that j , i.
Next, consider the set of most preferred partners of agent j. Without loss of generality we
again may assume that B j is a singleton, say B j(Γm, u) = {k}. It must again hold that k <
{i, j}. Subsequently, consider the set of most preferred partners of agent k. Without loss of
generality we again assume uniqueness, say Bk(Γm, u) = {l}. It must be that l < { j, k}, moreover
l , i otherwise Γ2 contains a cycle. Hence, l < {i, j, k}. By continuing this process in a
similar fashion, given that the player set N is finite, we construct a cycle. Therefore, we have
established a contradiction.

Proof of Theorem 4.4
If: Consider a separable relational economy E = (N,Γ, u) such that u ∈ U exhibits no exter-
nalities and is superadditive. We consider two separate cases: (I) when Γ2 does not contain any
cycle and (II) when Γ2 contains a cycle with a number of connected agents that is a multiple of
3. Let M ⊆ N be some subset of economic agents. Then we denote by

Γ(M) = Γm ∩ {i j | i, j ∈ M}

the structure of economic matching activities and autarkic positions restricted to the subset M.
Using this auxiliary notation we proceed with the proof of the two cases.

C I: Assume that Γ2 is acyclic. We now device an algorithm to construct a stable activity
pattern in the economy E introduced above. This construction consists of several steps and
collects agents in various cooperatives such that the resulting pattern is stable.

15Here i ∈ Bi(Γm, u) refers to agent i preferring to remain in autarky over being member of any matching with
another agent.
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We define Γ1 = Γm, N1 = N, and Λ1 = ∅. We now proceed by constructing the desired strongly
stable activity pattern in a step-wise fashion:

Let Γk, Nk, and Λk be given for k, emphasizing that Γk ⊆ Γ(Nk) and that Λk ⊆ Γ is some partial
activity pattern. We now proceed by constructing these elements for step k+1. With application
of Lemma 1 to Γk, there might be an agent i ∈ Nk such that i ∈ Bi(Γk, u). If that is the case, we
define

Nk+1 = Nk \ {i} ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {ii}.

Subsequently we proceed to step k + 1 in our construction process.
If that is not the case, then for every i ∈ N it holds that i < Bi(Γk, u), but according to Lemma 1
there exist at least two agents i, j ∈ Nk with i , j and i ∈ B j(Γk, u) as well as j ∈ Bi(Γk, u). Take
two agents i, j ∈ Nk as indicated and define M = ∅ as well as G = {i j} ∈ Γ2. We now check
whether the activity G = {i j} can be enhanced into a cooperative. This is done as follows.
We first introduce some auxiliary notation. Let Γ

−pq
k = Γ(Nk \ {pq}) for any feasible matching

pq ∈ Γk.
If for every agent h ∈ Nk \ {i, j} it holds that i < Bh(Γ− jh

k , u) as well as j < Bh(Γ−ih
k , u), then

we proceed by defining16

Nk+1 = Nk \ {i, j} ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {i j}.

Subsequently we proceed to step k + 1 in our construction process.
If not, then without loss of generality we may suppose there is some agent h ∈ Nk \ {i, j} such
that i ∈ Bh(Γ− jh

k , u). Then ih is an optimal matching for agent h in Γk knowing that agent j is
engaged with agent i as well. In that case we make agent i a convener and we add agent h to
that cooperative. Thus, we redefine G = {i j, ih} and we let M = { j, h}.

We now follow the subsequent iterative procedure:

(♣) We first introduce Γ′k = Γ(Nk \ M) ⊂ Γk. We proceed as before and check whether there
is some agent h′ ∈ Nk \ (M ∪ {i}) such that i ∈ Bh′(Γ′k, u). If that is not the case, then we
proceed to (�). Otherwise, we proceed to (♠).

(♠) Suppose that an agent h′ can be selected as identified in (♣), then we proceed by redefining
G = G ∪ {ih′} and M = M ∪ {h′}. In this case the identified agent h′ is added to the
cooperative under construction G and removed from consideration. We then return to (♣)
to repeat the process described there for the redefined G and M.

16In this case there is no agent who has an optimal matching with agent i or j. In that case the matching i j is
assigned to the activity pattern under construction.
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(�) Suppose there is no agent h′ that has an optimal matching with the identified convener i of
cooperative G as described in (♣). Then we proceed to the next step by defining

Nk+1 = Nk \ (M ∪ {i}) ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {G}.

Subsequently we proceed to step k + 1 in our construction process.

We proceed through the procedure until for some k = k̄ we arrive at the situation that Nk̄ = ∅.
(Note that such a k̄ ≤ n always exists.) Now consider Λ? = Λk̄. First, since the procedure
devised above assigns every agent to either an autarkic activity, a matching activity, or a coop-
erative activity, Λ? is an activity pattern. Furthermore, each constructed activity in Λ? is based
on either the optimality of an autarkic activity or the optimality of a matching activity. In the
latter case, the non-externality and superadditivity properties of the hedonic utilities imply that
the utilities generated in the constructed cooperatives in Λ? are maximal under the imposed
restrictions as well. Finally, this also guarantees that the convener of cooperative G ∈ Γ3 ∩ Λ?

does not have any incentives to break any relationships with members i ∈ N(G). This implies,
therefore, that the constructed activity pattern Λ? is indeed strongly stable as required.
This concludes the proof of Case I.

C II: The proof of Case II is based on the constructed proof for Case I above. Let the set of
feasible matchings Γ2 contain a cycle C = (i1, . . . , im) with ik−1ik ∈ Γ2 and m ≥ 4 with m−1 = 3s
with s ∈ {1, 2, . . .}. Depending on the utility profile, we will distinguish two sub-cases.

C II.1 First, consider a utility functions ui ∈ U which satisfies superadditivity and the non-
externality property, such that either (a) there exists an agent ik with k = 1, . . . ,m − 1 such that
ik ∈ Bik(Γ

m, u); or (b) there are two consecutive agents along the cycle ik−1, ik ∈ C for some
k = 1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik(Γ

m, u) and ik ∈ Bik−1(Γ
m, u); or (c) there is a

pair of agents one of whom is on the cycle and the other not, i.e., ik ∈ C for some k = 2, . . . ,m−1
and j < C such that j ∈ Bik(Γ

m, u) and ik ∈ B j(Γm, u). Then, we can use the algorithm described
in Case I to construct a stable activity pattern since the utility profile ensures that in any of the
three cases described above, we can identify agents that fit the requirements stated in Lemma 1.

C II.2 Last, consider a profile of utility functions ui ∈ U such that there is no agent ik

with k = 1, . . . ,m − 1 such that ik ∈ Bik(Γ
m, u), or there are no consecutive agents along the

cycle ik−1, ik ∈ C for some k = 1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik(Γ
m, u) and

ik ∈ Bik−1(Γ
m, u), nor is there a pair of agents one of whom is on the cycle and the other not,

i.e., ik ∈ C for some k = 1, . . . ,m − 1 and j < C such that i j ∈ Bik(Γ
m, u) and ik ∈ B j(Γm, u).

Then, without loss of generality, we may assume that uik(ikik) ≤ uik(ik−1ik) < uik(ik, ik+1) or
uik(ik−1ik) < uik(ikik) < uik(ik, ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1.17 Suppose, the profile
of utility function is uik(ikik) ≤ uik(ik−1ik) < uik(ik, ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1.
Then, a partial activity pattern Λ? can be introduced that consists of exactly s cooperatives of

17Alternatively, the profile of utility functions ui ∈ Us must be such that uik (ikik) ≤ uik (ikik+1) < uik (ik−1ik) or
uik (ikik+1) < uik (ikik) < uik (ik−1ik) for all k = 1, . . . ,m − 1 with i0 = im−1.
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the type

{ {i2i1i3}, {i5i4i6}, . . . , {im−2im−3im−1} } ⊆ Λ?.

Next, all other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) activity pattern Λ?, which furthermore is stable: all agents who are not
linked to their most preferred partner have their most preferred partner linked to her own most
preferred partner. This implies that they have no incentive to sever their links; moreover, these
agents are not in a matching activity and, therefore, they cannot add a link without severing an
existing link.
Last, suppose, the profile of utility function is uik(ik−1ik) < uik(ikik) < uik(ik, ik+1) for all k =

1, . . . ,m − 1 with i0 = im−1. Then, a partial activity pattern Λ? can be introduced that consists
of exactly m − 1 autarkic agents

{ {i1i1}, {i2i2}, . . . , {im−1im−1} } ⊆ Λ?.

All other agents are linked following the algorithm presented in Case I. Thus, we have con-
structed a (complete) activity pattern Λ?, which furthermore is strongly stable: all along the
cycle are autarkic as the only partner whom they prefer to being autarkic prefers to be autarkic
himself than to be matched with them.
This completes the proof of Case II.

Only if: Let Γ = Γ1 ∪ Γ2 ∪ Σ(Γ2) be a feasible activity structure and let U be the collection
of all superadditive and non-externality hedonic utility profiles. We show by contradiction the
necessity of the condition that Γ2 contains no cycles or if it contains a cycle it is a cycle with a
number of connected agents equal m ≥ 4 with m − 1 , 3s with s = {1, 2, . . .}.
Let there be a stable activity pattern in the standard relational economy (N,Γ, u) for all u ∈ U.
Let the set of feasible matchings Γ2 contain a cycle C = (i1, i2, . . . , im} with ik, ik+1 ∈ Γ2 for all
k = 1, . . . ,m − 1 and m ≥ 4 and m − 1 , 3s with s = {1, 2, . . .}.
Now, consider a utility profile u ∈ U such that uik(ik, j) < uik(ik, ik) < uik(ik−1, ik) < uik(ik, ik+1) <
uik(ikik−1ik=1) for all k = 1, . . . ,m − 1 with i0 = im−1 and all j ∈ Nik(Γ

2) \ {ik−1, ik+1}. Let Λ? be a
stable activity pattern in this standard relational economy. Note that in the stable activity pattern
Λ? the largest number of agents that can form a cooperative that satisfies the [IR] condition is
three. We again consider two sub-cases.

C A. First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m − 1. Since Λ? is a stable activity
pattern, the individual rationality condition is satisfied for all agents in N. Hence, agent ik−1

is in a state of autarky or connected to agent ik−2 either in the matching g′ = {ik−1ik−2}, or in
the cooperative g′′ = {ik−2ik−1ik−3} with i0 = im−1, i−1 = im−2, and i−2 = im−3. In all three cases
the [PS] condition is violated: uik(ik−1ik) > uik(Λ

?) and uik−1(ik−1ik) > uik−1(g
′′) = uik−1(g

′) >
uik−1(ik−1ik−1). Since Λ? is stable, then it cannot be that {ikik} ∈ Λ? for some ik ∈ C.

C B. Next, suppose that there is no agent along the cycle such that ikik ∈ Λ?. Since Λ? is
a stable activity pattern, the [IR] condition is satisfied for all agents in N. Since m − 1 , 3s
with s = {1, 2, . . .}, m − 1 ≥ 4 and there is no agent ik along the cycle such that ikik ∈ Λ?, there
must be at least two distinct agents along the cycle, ik−1 and ik for some k = 1, . . . ,m − 1 and
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k0 = m − 1, such that the matching {ik−1, ik} ∈ Λ?. Then, agent ik−2 is connected to agent ik−3

either in the matching g′ = {ik−2ik−3}, or in the cooperative g′′ = {ik−3ik−2ik−4} with i0 = im−1,
i−1 = im−2, i−2 = im−3, and i−3 = im−4. In all cases the no blocking condition [PS*] is violated:
uik−2(ik−1ik−2ik) > uik−2(g

′) = uik−2(g
′′) as the the matching ikik−2 < Γ2 and uik−1({ik−1ik−2ik}) ≥

uik−1(ik−1ik) with k−1 = m − 2 due to superadditivity.
Hence, when Γ2 contains a cycle with a number of connected agents not a multiple of three,
there are such utility profiles that satisfy superadditivity and non-externality properties, for
which there is no stable activity pattern in the relational economy.
This completes the proof of Theorem 4.4.

B Appendix: Proof of Theorem 5.5
Before we present the proof we will introduce additional shorthand notation and some auxiliary
results.

First, we introduce some new terms. Let E = (N,Γ, u) be a standard relational economy.
Let Λ be an activity pattern. The neighborhood of agent i ∈ N in activity pattern Λ is denoted
by Ni(Λ). The utility of agent i in activity pattern Λ is denoted by ui(Λ). Furthermore, we say
that agents i ∈ N and j ∈ N form a blocking pair if one of the conditions in Definition 3.4 is not
satisfied with respect to these agents. Last, we introduce several relationships between activity
patterns. We will say that a blocking pair in activity pattern Λ is satisfied in activity pattern Λ′

if activity pattern Λ′ is formed by satisfying the condition in Definition 3.4 that is violated in
activity pattern Λ for a given blocking pair of agents i and j.

Let the activity pattern Λ′ be formed by severing all links of agent i in activity pattern Λ

and forming the autarky ii. Then the relationship between activity patterns Λ and Λ′ will be
denoted as Λ′ = Λ ∪ {ii}.

Let the activity pattern Λ′ be formed by severing all links of two distinct agents i and j in
activity pattern Λ with j < Ni(Λ) and forming the matching i j. Then the relationship between
activity patterns Λ and Λ′ will be denoted as Λ′ = Λ ∪ {i j}.

Last, let the activity pattern Λ′ be formed by severing all links of agent i in activity pattern
Λ and forming the link between agents i and j with j < Ni(Λ) such that agent j keeps all his
links present in activity pattern Λ. Then the relationship between activity patterns Λ and Λ′

will be denoted as Λ′ = Λ ⊕ j {i j} where ⊕ j indicates that agent j acts as a convener and keeps
all his links.

Note that for all agents k ∈ Ni(Λ) such that Nk(Λ) = {i}, it will hold that {kk} ⊆ Λ′.
Below we present some preliminary results.

Lemma 2 Let (N,Γ, u) be a standard relational economy such that the utility function u exhibits
multiplicative size-based externalities with αc > 0 for all feasible conveners c ∈ N in Γ3 =

Σ(Γ2). Then for any agent i ∈ N and any two cooperatives G and H ∈ Γ3 with i ∈ N(G) and
i ∈ N(H) and N∗(G) = N∗(H) and N∗(G) , {i}, it holds that

(i) ui(G) = ui(H) if and only if #N(G) = #N(H)

(ii) ui(G) < ui(H) if and only if #N(G) < #N(H).
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The proof of Lemma 2 follows directly from the definitions and is therefore omitted.

Lemma 3 Let (N,Γ, u) be a standard relational economy. Let Γ2 be acyclic. Then there is at
most one path between any two distinct agents in N.

The proof of Lemma 3 follows immediately from the fact that Γ2 is acyclic. As a corollary of
Lemma 3, we know that for any agent i ∈ N and any two distinct agents j, k ∈ Ni(Γ2), it holds
that jk < Γ2.

Lemma 4 Let (N,Γ, u) be a standard relational economy and Γ2 be acyclic. Let Λ and Λ′ be
two activity patterns in this relational economy such that Λ′ is formed by satisfying a blocking
pair between two agents s, t ∈ N. Consider an agent j ∈ N \ {s, t} such that p js = (i1, . . . , im)
with i1 = j and im = s and t < p js who does not form a blocking pair in Λ. Then:

(i) If j ∈ Ns(Λ) and Λ′ = Λ ⊕s {st}, j cannot form a blocking pair in Λ′;

(ii) If m > 4, then agent j cannot form a blocking pair in Λ′;

(iii) If m ≥ 3 and im−1s < Λ, then agent j cannot form a blocking pair in Λ′;

(iv) If m = 2 and js < Λ, then the only blocking pair agent j may form in Λ′ is with agent s
in which PS* condition of Definition 3.4 is not satisfied and agent s acts as a convener;

(v) If m = 4, then agent j may only form a blocking pair in Λ′ with agent i2 and only if
Ni2(Λ) = Ns(Λ);

Proof. Consider a standard relational economy (N,Γ, u) with Γ2 be acyclic. Let Λ and Λ′ be
two activity patterns such that Λ′ is formed by satisfying a blocking pair between two agents
s, t ∈ N. Consider an agent j ∈ N \ {s, t} such that p js = (i1, . . . , im) with i1 = j and im = s and
t < p js who does not form a blocking pair in Λ.

(i) Let j ∈ Ns(Λ) and Λ′ = Λ ⊕s { js}. By Lemma 2, u j(Λ) < u j(Λ′) and by Lemma 3 for all
h ∈ N j(Γ2) with j , s it holds that Nh(Λ) = Nh(Λ′) and uh(Λ) = uh(Λ′). Hence if agent j
could form a blocking pair in Λ′, he could form the same blocking pair in Λ.

(ii) Let m > 4. By Lemma 3, m > 4, and t < p js it follows that N j(Γ2) ∩ Ns(Γ2) = ∅ and
N j(Γ2) ∩ Nt(Γ2) = ∅. Hence, for agent j it holds that N j(Λ) = N j(Λ′) and u j(Λ) = u j(Λ′).
Moreover, since m > 4 for all agents h ∈ N j(Γ2) it holds that Nh(Λ) = Nh(Λ′) and
uh(Λ) = uh(Λ′). Since agent j can only form a blocking pair with an agent h ∈ N j(Γ2), it
follows that if j does not form a blocking pair in Λ, j cannot form a blocking pair in Λ′

either.

(iii) If m > 4, the proof follows the proof of case (ii) above. Let m = 3 or m = 4 and im−1s < Λ.
By im−1s < Λ and using Lemma 3, it follows that N j(Λ) = N j(Λ′) and u j(Λ) = u j(Λ′) and
that for all agents h ∈ N j(Γ2) it holds that Nh(Λ) = Nh(Λ′) and uh(Λ) = uh(Λ′). Since
agent j can only form a blocking pair with an agent h ∈ N j(Γ2), it follows that if j does
not form a blocking pair in Λ, j cannot form a blocking pair in Λ′ either.
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(iv) Let m = 2 and js < Λ. First suppose that agent j can form a blocking pair in Λ′ with an
agent h ∈ N j(Γ2) with h , s. This is not possible due to case (iii) above.

Next, suppose that agents j and s form a blocking pair in Λ′ because the PS condition of
Definition 3.4 is not satisfied. Hence, it must be that us(Λ′) < us( js) and u j(Λ′) < u j( js).
Since u j(Λ) = u j(Λ′) and us(Λ) < us(Λ′), agents j and s could form a blocking pair in
Λ, which establishes a contradiction to the fact that that agents s and t form the only
blocking pair in Λ.

Last, suppose that agents j and s form a blocking pair in Λ′ becasue the PS* condition
of Definition 3.4 is not satisfied and agent j acts as a convener. Hence it must be that
us(Λ′) < us( js)+α j#Ns(Λ′) and u j( js) > −α j. Since us(Λ′) > us(Λ) it follows that agents
j and s could form a blocking pair in Λ, which establishes a contradiction to the fact that
that agents s and t form the only blocking pair in Λ.

Hence the only blocking pair agents j and s can form in Λ′ is if the PS* condition of
Definition 3.4 is not satisfied with agent s acting as a convener.

(v) Let m = 4. Lemma 3, m = 4, and t < p js imply that N j(Γ2) ∩ Ns(Γ2) = ∅ and
N j(Γ2) ∩ Nt(Γ2) = ∅. Hence, for agent j it holds that N j(Λ) = N j(Λ′) and u j(Λ) = u j(Λ′).
Moreover, since m = 4 there is only one agent k ∈ N j(Γ2) for whom it may hold that
uk(Λ) > uk(Λ′) and it can only hold if Nk(Λ) = Ns(Λ): for all other agents h ∈ N j(Γ2) \ {k}
it holds that Nh(Λ) = Nh(Λ′) and uh(Λ) = uh(Λ′). Therefore, if j does not form a blocking
pair in Λ, the only blocking pair he can form in Λ′ is with agent k.

Proof of Theorem 5.5
Let E = (N,Γ, u) be a standard relational economy such that u exhibits multiplicative size-based
externalities such that αc > 0 for all potential conveners c ∈ N∗(Γ3). Suppose Γ2 is acyclic.

Suppose, that E does not admit a stable activity pattern. Therefore there exists a sequence
of activity patterns Λ = (Λ1, . . . , Lr) with Λk+1 constructed by satisfying a blocking pair in Λk

for k = 1, . . . , r − 1 such that Λr = Λ1. If not, due to the finite number of activity patterns, we
can construct a stable activity pattern by satisfying blocking pairs sequentially.
Furthermore, all activity patterns have a blocking pair. Hence, starting from any sequence of
activity patterns Λ′ = (Λ′1, . . . ,Λ

′
r) with r ≥ 4 such that any activity pattern Λ′f ⊆ Λ

′ is formed
by satisfying a blocking pair in the preceding activity pattern Λ′f−1 for f = 1, . . . , r − 1 contains
an activity pattern Λ′k ⊆ Λ such that Λ′r = Λ′k. Otherwise, due to the finite number of possible
activity pattern, we can construct stable activity pattern by satisfying blocking pairs sequen-
tially.

Without loss of generality, suppose that there is exactly one such sequenceΛ = (Λ1, . . . ,Λr)
with r ≥ 4 such that any activity pattern Λk ⊆ Λ is formed by satisfying a blocking pair in the
preceding activity pattern Λk−1 for k = 1, . . . , r − 1 with Λr = Λ1. Hence starting from any ac-
tivity pattern Λ by satisfying blocking pairs we reach some activity pattern Λk ⊆ Λ. Moreover,
each activity pattern Λ1, . . . ,Λr ⊆ Λ has exactly one blocking pair, otherwise, there are other
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sequences of activity patterns (Λ′1, . . . ,Λ
′
r) with Λ′r = Λ′1.

We will discuss all possible types of blocking pairs in Λ1 and show that it cannot be that
Λr = Λ1.

C I: Consider activity pattern Λ1 ⊆ Λ with {ii} ⊆ Λ1 and { j j} ⊆ Λ1 such that agents i and j
form a blocking pair. Hence ui(ii) < ui(i j) and u j( j j) < u j(i j). Since Λr = Λ1, there must be an
activity pattern Λq ⊆ Λ with 1 < q < r such that either agent i or agent j forms a blocking pair
that requires him to delete the link with the other agent.
Without loss of genreality, suppose agent i deletes the link with agent j. For agent i to delete
this link there must be an agent t ∈ Ni(Γ2) with t , j such that ut(Λ1) , ut(Λq), so that agents
t and i form a blocking pair in Λq but not in Λ1. For ut(Λq) , ut(Λ1) it must be that agent t
forms a blocking pair in some activity pattern Λk with 1 < k < q. By Lemmas 3 and 4 cases (ii)
and (iii) it follows that no agent h < Ni(Γ2)∪ N j(Γ2) may form a blocking pair before forming a
blocking pair with agent i or j. Hence, agent t must form a blocking pair with agent i in Λk and
by Lemma 4 case (iii), it follows that the agents i acts as convener in that blocking pair. Hence
it must be that ui(it) > −αi and ut(Λ1) < ut(it) + αi#Ni(Λk). By Lemmas 3 and 4 cases (i) and
(iii), it follows that agent j will thus not form a blocking pair that requires him to delete the link
with agent i in any activity pattern Λk+1, . . . ,Λq.
Since agents i and t form a blocking pair in Λq, they are not linked in Λq and since agent i
cannot delete a link with agent t without deleting a link with agent j, there must be another
activity pattern Λm with k < m < q in which agent t forms a blocking pair that requires him to
sever his link with agent i.
Because agent t forms a blocking pair in Λm by deleting the link with agent i, by Lemma 4 cases
(i) and (iii), it must be that #Ni(Λq) = #Ni(Λk). Since there is only one blocking pair in Λq and it
requires agent i to delete its links, it must be that ut(Λq) > ut(Λm) = ut(it) + αi#Ni(Λk) > ut(it),
otherwise agents i and t could form a blocking pair when i acts as a convener. Therefore, it
cannot be that agents i and t form a blocking pair because the PS condition of Definition 3.4
is not satisfied. So it must be that agents i and t form a blocking pair in Λq because the PS*
condition of Definition 3.4 is not satisfied and agent t acts as a convener. Hence ut(it) > −αt. If
agents i and t did not form a blocking pair in Λ1 it must be that either agent t could not act as a
convener in Λ1, or #Nt(Λ1) < #Nt(Λq).
First suppose agents i and t cannot form a blocking pair in Λ1 because agent t cannot act as a
convener.

1. Suppose {tt} ∈ Λ1. By Lemmas 3 and 4, we know that Nl(Λ1) = Nl(Λm) or all h ∈
Nt(Γ2) \ {i}, thus, uh(Λ1) = uh(Λm). If agent t forms a blocking pair in Λm, such that he
deletes the link with i, t could have formed a blocking pair in Λ1 because ut(Λ1) < ut(Λm)
by Lemma 2 and the fact that agent i cannot delete a link without deleting all its links.
Thus establishing a contradiction that there is only one blocking pair in Λ1 and it involves
agents i , t and j , t.

2. Suppose st ∈ (Λ1) with s ∈ N∗(Λ1). If agents i and t form a blocking pair in Λk such that
agent i acts as a convener, it must be that ut(Λk) < ut(it) + αi#Ni(Λk). By Lemmas 3 and
4 if agent t forms a blocking pair in Λm that requires him to delete the link with agent i,
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it must be to form a blocking pair with agent s as for all h ∈ Nt(Γ2) with h , s and h , i,
Nh(Λ1) = Nh(Λk) = Nh(Λm). If agents s and t form a blocking pair in Λm, it must be that
#Ns(Λm) > #Ns(Λ1) and agent s acts as a convener with agent t. Hence agent t cannot
form a blocking pair with agent i as t cannot act as a convener. Moreover, by Lemmas 3
and 4 and the fact that there is only one blocking pair in each activity pattern, then agent
t could only form a blocking pair if agent s deletes all the links agent t will be autarkic
and since ut(tt) < ut(it) + αi#Ni(Λk) the only blocking pair he could form is with agent i
acting as a convener.

Second, suppose that agents i and t did not form a blocking pair in Λ1 because #Nt(Λ1) <
#Nt(Λq) and agent t could form a blocking pair when acting as a convener in Λ1. Since there
is no activity pattern Λ′ ⊆ Λ such that t forms a blocking pair when acting as a convener with
an agent p < Nt(Λ1) unless #Nt(Λ′) > #Nt(Λ1), otherwise agent t could form this blocking pair
in Λk, there is no activity pattern Λq in which agent i deletes the link with j to join agent t as a
convener.
Thus we have shown that agents i and j will not delete their link, hence Λr , Λ1.

Therefore, a blocking pair when the PS condition of Definition 3.4 is not satisfied for two
autarkic agents cannot be part of the sequence of activity patterns Λ.

C II Consider activity pattern Λ1 ⊆ Λ such that { j j} ∈ Λ1 and {ih} ∈ Λ1 with i , h such that
agents i and j form a blocking pair because the PS* condition in Definition 3.4 is not satisfied.
Hence u j( j j) < ui(i j) + αi and ui(i j) > −αi. Consider activity pattern Λ2 = Λ1 ⊕

i {i j}. Since
Λr = Λ1, there must be an activity pattern Λm ⊆ Λ with 1 < m < r such that either agent i or
agent j forms a blocking pair that requires him to delete the link with the other agent.

Since there is no stable activity pattern, there must be a blocking pair in activity pattern Λ2. By
Lemma 4 cases (i), (ii), and (iii) the blocking pair must involve agent i or j.
Suppose the blocking pair involves agent i. By Lemmas 3 and 4 and the fact that there is only
one blocking pair in Λ1 any activity pattern formed by satisfying a blocking pair that involves
an agent l with i ∈ p jl agent j or agent h will not form a blocking pair, unless satisfying the
blocking pair does not require for agent i to delete simultaneously his links with agents j and h.
So, for Λ1 = Λr, there must be an activity pattern in which agent i deletes his links with agents
j and h. To find a contradiction we can follow the reasoning in C I.
Suppose instead the blocking pair involves agent j. It must be that it requires from agent j to
sever his link with agent i. By Lemma 3 and Lemma 4 there is no such agent with whom j can
form a blocking pair, otherwise j could form an alternative blocking pair in Λ1.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
an autarkic agent and an agent in a matching cannot be part of the sequence of activity patterns
Λ.

C III Consider activity pattern Λ1 ⊆ Λ such that { j j} ∈ Λ1 and i ∈ N∗(Λk) such that agents
i and j form a blocking pair because the PS* condition in Definition 3.4 is not satisfied. Hence
u j( j j) < ui(i j) + αi#Ni(Λ1) and ui(i j) > −αi. Consider activity pattern Λ2 = Λ1 ⊕

i {i j}. Since
Λr = Λ1, there must be an activity pattern Λm ⊆ Λ with 1 < m < r such that either agent i or
agent j forms a blocking pair that requires him to delete the link with the other agent.
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Following the reasoning of C I  II, we can show a contradiction.
Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for

an autarkic agent and a convener cannot be part of the sequence of activity patterns Λ.

C IV: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1. Let agent i form a blocking pair
because the IR condition of Definition 3.4 is not satisfied. Hence ui(ii) > ui(i j).
Consider activity pattern Λ2 = Λ1 ∪ {ii}. Since there is no stable activity pattern, there is a
blocking pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j},
Nl(Λ1) = Nl(Λ2) and ul(Λ1) = ul(Λ2) a blocking pair in Λ2 must involve either agent i or j and
an agent h ∈ Ni(Γ2) ∪ N j(Γ2). By Lemma 4 case (iv) this is not possible as neither agent i nor j
can act as a convener in a blocking pair.

Therefore, a blocking pair in which the IR condition of Definition 3.4 is not satisfied for an
agent in a matching cannot be part of the sequence of activity patterns Λ.

C V: Consider activity pattern Λ1 ⊆ Λ such that Ni(Λ1) = { j} and j ∈ N∗(Λ1). Let agent i
form a blocking pair because the IR condition of Definition 3.4 is not satisfied. Hence ui(ii) >
ui(i j) + α j[#N j(Λ1) − 1].
Consider activity pattern Λ2 = Λk ∪ {ii}. Since there is no stable activity pattern, there is a
blocking pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j},
Nl(Λ1) = Nl(Λ2), and for all agents l ∈ N \ {i, j,N j(Λ2)}, ul(Λ1) = ul(Λ2) a blocking pair in Λ2

must involve either agent i or j or an agent h ∈ N j(Λ2).
Following the analysis in C IV, we can show that agent i does not form a blocking pair
before he forms a blocking pair with agent j. Moreover, if there is an activity pattern such that
#N j(Λm) ≥ #N j(Λ1), then it must be that {ii} ∈ Λm and agents i and j form blocking pair in
which agent j acts as a convener and agent i is autarkic. By C III we know that a blocking
pair between an autarkic agent and an agent who is acting as a convener cannot be part of a
sequence of activity patterns such that (Λ1, . . . ,Λr) with Λ1 = Λr, and hence it cannot be that i
and j form a blocking pair. Hence Λr , Λ1.

Therefore, a blocking pair in which the IR condition of Definition 3.4 is not satisfied for an
agent in a cooperative who is not convener of the cooperative cannot be part of the sequence of
activity patterns Λ.

C VI: Consider activity pattern Λ1 ⊆ Λ such that {ii} ∈ Λ1 and { js} ∈ Λ1 with j , s. Let
agents i and j form a blocking pair because the PS condition of Definition 3.4 is not satisfied.
Hence ui(ii) < ui(i j) and u j(i j) > u j( js). Since this is the only blocking pair and α j > 0, it must
also be that u j(i j) < −α j, otherwise agents i and j could form a blocking pair because the PS*
condition of Definition 3.4 is not satisfied. We will show that there cannot be an activity pattern
Λq ⊆ Λ with { js} ∈ Λq.
Consider activity pattern Λ2 = Λ1 ∪ {i j}. Since there is no stable activity pattern, there is a
blocking pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j, s},
Nl(Λ1) = Nl(Λ2), and for all agents l ∈ N \ {i, j, s} it must be that ul(Λ1) = ul(Λ2) a blocking
pair in Λ2 must involve either agent i, j or s.
Suppose the blocking pair in Λ2 involves agent i, then using the analysis for agent i in C I,
it can be shown that agent i will not delete the link with agent j. And by Lemmas 3 and 4, if
agents j and s do not form a blocking pair in Λ2, they will not form a blocking pair.
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Next, suppose that the blocking pair in Λ2 involves agent j. Since u j( js) < u j(i j) and u j(i j) <
−α j agent j will not form a blocking pair with agent s when acting as a convener. Since
u j(i j) < −α j agent j will not form a blocking pair with an agent h ∈ N j(Γ2) with h < N j(Λ1)
otherwise agent j could form another blocking pair in Λ1.
It must be that agent s forms a blocking pair in Λ2. Hence, by Lemmas 3 and 4 and the fact
that there is only one blocking pair in each activity pattern in Λ the first blocking pair agent j is
with agent s. Suppose agent j and s form a blocking pair in some activity pattern Λk ⊆ Λ with
2 < k < q. By the above discussion, it follows that j and s form a blocking pair because the
PS* condition of Definition 3.4 is not satisfied and agent s acts as a convener. Hence agent i is
autarkic in Λk+1 and does not form a blocking pair unless it is with agent j. In addition, there is
at least one agent h ∈ Ns(Γ2) with s , j such that h ∈ Ns(Λk). Note that by Lemmas 3 and 4 and
the fact that there is only one blocking pair, h does not form a blocking pair until agent s does
not delete the link and agent s cannot delete the link with agent h without deleting the link with
agent j as well. Hence, { js} cannot be an element of an activity pattern unless agent s deletes
all his links as a convener.

Suppose there is an activity pattern Λm with k < m < r such that agent s deletes all his links
as a convener and thus agent j is autarkic. Since u j( j j) < u j(i j) (otherwise agent j could form
a different blocking pair in Λ1), it must be that the only blocking pair in Λm must be by agent
j and i because the PS condition of Definition 3.4 is not satisfied. Since the blocking pair of
agents i and j entails two autarkic agents who form a blocking pair and by C I, we know that
such blocking pair cannot be part of a sequence of activity patterns (Λ1, . . . ,Λr) with Λr = Λ1,
thus, we have established a contradiction.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for an
autarkic agent and an agent in a matching cannot be part of the sequence of activity patterns Λ.

C VII: Consider activity pattern Λ1 ⊆ Λ such that {ii} ∈ Λ1 and { j} ∈ N∗(Λ1). Let agents
i and j form a blocking pair because the PS condition of Definition 3.4 is not satisfied. Hence
ui(ii) < ui(i j) and u j(i j) >

∑
h∈N j(Λ1) u j( jh) + α j[#N j(Λ1) − 1]. Since this is the only blocking

pair and α j > 0, it must also be that u j(i j) < −α j, otherwise agents i and j can form a blocking
pair because the PS* condition of Definition 3.4 is not satisfied. We will show that there cannot
be an activity pattern Λq ⊆ Λ with N j(Λ1) = N j(Λq).
Consider activity pattern Λ2 = Λ1 ∪ {i j}. Since there is no stable activity pattern, there is a
blocking pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j,N j(Λ1)},
Nl(Λ1) = Nl(Λ2), and ul(Λ1) = ul(Λ2) a blocking pair in Λ2 must involve either agent i, j or an
agent s ∈ N j(Λ1).
Suppose the blocking pair in Λ2 involves agent i, then using the analysis for agent i in C
I, it can be shown that agent i will not delete the link with agent j. And by Lemmas 3 and 4,
if agents j and any agent s ∈ N j(Λ1) do not form a blocking pair in Λ2, they will not form a
blocking pair unless agent i deletes his link with j.
Next, suppose the blocking pair in Λ2 involves agent j and no agent s ∈ N j(Λ1). Since u j(i j) <
−α j agent j will not form a blocking pair with an agent h ∈ N j(Γ2) with h < N j(Λ1) otherwise
agent j could form another blocking pair in Λ1.
Suppose agent j forms a blocking pair in Λ2 with an agent s ∈ N j(Λ1) with {ss} ∈ Λ2. This,
however, contradicts either C II or C VI.
Last suppose that an agent s ∈ N j(Λ1) forms a blocking pair in Λ2 with an agent f ∈ Ns(Γ2)
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with f , j. Hence if there is an activity pattern Λq with N j(Λq) = N j(Λk) agent j must form
a blocking pair and the first blocking pair j can make by Lemmas 3 and 4 is with agent s. Let
the activity pattern in which agents j and s form a blocking pair is Λk. It must be that j and
s form a blocking pair because the PS* condition of Definition 3.4 such that agent s acts as a
convener is not satisfied otherwise j and s could form a blocking pair in Λ2. Hence by Lemmas
3 and 4 and the fact that there is only one blocking pair in each activity pattern agent j cannot
form a blocking pair with an agent h ∈ N j(Λ1) with h , s, unless agent s deletes all his links.
If agent s deletes all his links, agent j will be autarkic, and hence, must form a blocking pair
with agent i, otherwise agents i and j could not form a blocking pair in Λ1. Since j is autarkic
and i is autarkic when making a blocking pair with i, we know by Case I that this blocking pair
cannot be part of a sequence of activity patterns (Λ1, . . . ,Λr) with Λr = Λ1 and thus we have
established a contradiction.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for
an autarkic agent and a convener of a cooperative cannot be part of the sequence of activity
patterns Λ.

C VIII: Consider activity pattern Λ1 ⊆ Λ such that {ii} ∈ Λ1 and N j(Λ1) = {s} and s ∈
N∗(Λk). Let agents i and j form a blocking pair because the PS condition of Definition 3.4 is
not satisfied. Hence ui(ii) < ui(i j) and u j(i j) > u j( js) + αs[#Ns(Λ1) − 1]. We will show that
there cannot be an activity pattern Λq ⊆ Λ with Ns(Λq) = Ns(Λ1).
For Ns(Λq) = Ns(Λk), agents j and s must form a blocking pair. Agents j and s can form a
blocking pair if and only if one of them acts as a convener.
Suppose agents j and s form a blocking pair in Λk ⊆ Λ and agent j acts as a convener. For
Ns(Λq) = Ns(Λ1) agent s must be able to form blocking pairs as a convener, hence, there must
be an activity pattern Λm ⊆ Λ with k < m < q such that either { js} ∈ Λm or s severs his link
with j. By Lemma 4 case (i) if agent j acts as a convener, agent i will not sever his link with
him, otherwise there could be another blocking pair in Λ1. Hence, it must be that s severs his
link with j, which implies that j must join agent s as a convener, and the analysis below will
hold.
Suppose agents j and s form a blocking pair in Λk ⊆ Λ and agent s acts as a convener. For
agent j to sever his link with i to join s as a convener, it must be that Ns(Λk) > Ns(Λ1) − 1.
Hence, there is an agent h ∈ Ns(Γ2) with h ∈ Ns(Λk) and h < Ns(Λ1). So, Λk+1 = Λk ⊕

s { js}.
Hence by Lemma 4 no agent h ∈ Ns(Λk) will form a blocking pair unless agent s severs all his
links. Suppose there is activity pattern Λm ⊆ Λ with k + 1 < m < q agent s severs all his links,
then agent j will be autarkic and must form a blocking pair with agent i as another autarkic
agent or as i acting as a convener, otherwise agents i and j could not form a blocking pair in Λ1

and by Case I, II, and III such blocking pair cannot be part of a sequence of activity patterns
(Λ1, . . . ,Λr) with Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for
an autarkic agent and an agent linked in a cooperative but not acting as the convener of the
cooperative cannot be part of the sequence of activity patterns Λ.

C IX: Consider activity pattern Λ1 ⊆ Λ such that i ∈ N∗(Λ1). Let agent i form a blocking
pair because the IR condition of Definition 3.4 is not satisfied. Hence Λ2 = Λ1 ∪ {ii}. Hence∑

h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1 − 1)] < ui(ii).
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Consider activity pattern Λ2 = Λ1 ∪ {ii}. For Λr = Λ1 it must be that agents i and all agents
h ∈ Ni(Λ1)) form blocking pairs in some activity patterns. Note that {ii} ∈ Λ2 and {hh} ∈ Λ2

for all h ∈ Ni(Λ1) and thus agent i and each agent h ∈ Ni(Λ1) must form a blocking pair as an
autarkic agent. As proven in C I, II, III, VI, VII, and VIII activity patterns in which autarkic
agents form blocking pairs cannot be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr)
such that Λr = Λ1.

Therefore, a blocking pair when the IR condition of Definition 3.4 is not satisfied for a
convener of a cooperative cannot be part of the sequence of activity patterns Λ.

C X: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {st} ∈ Λ1 with s ∈ N j(Γ2) and
s , i. Let agents j and s form a blocking pair because the PS condition of Definition 3.4 is not
satisfied. Hence u j(i j) < u j( js) and us(st) < us( js).
Consider activity pattern Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and t form
blocking pairs in some activity patterns. Note that {ii} ∈ Λ2 and {tt} ∈ Λ2 and thus i and t
form blocking pairs as autarkic agents. As proven in C I, II, III, VI, VII, and VIII, activity
patterns in which autarkic agents form blocking pairs cannot be part of a sequence of activity
patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for
two agents linked in matchings cannot be part of the sequence of activity patterns Λ.

C XI: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {st} ∈ Λ1 with s ∈ N j(Γ2)
and s , i. Let agents j and s form a blocking pair because the PS* condition of Definition 3.4
is not satisfied. Hence u j(i j) < u j( js) + αS and us( js) > −αs.
Consider activity pattern Λ2 = Λ1 ⊕

s { js}. For Λr = Λ1 it must be that agent i and j form
blocking pairs in some activity pattern. Note that {ii} ∈ Λ2 and thus i must form a blocking
pair as an autarkic agent. As proven in C I, II, III, VI, VII, and VIII, activity patterns in
which autarkic agents form blocking pairs cannot be part of a sequence of activity patterns
Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
two agents linked in matchings cannot be part of the sequence of activity patterns Λ.

C XII: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ N∗(Λk). Let agents
j and s form a blocking pair because the PS condition of Definition 3.4 is not satisfied. Hence
u j(i j) < u j( js) and

∑
h∈Ns(Λ1) us(hs) + αs[#Ns(Λ1) − 1] < us( js).

Consider activity pattern Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and h ∈ Ns(Λ1)
form blocking pairs in some activity patterns. Note that {ii} ∈ Λ2 and {hh} ∈ Λ2 for all h ∈
Ns(Λ1) and thus i and each h ∈ Ns(Λ1) must form at least one blocking pair as an autarkic
agent. As proven in C I, II, III, VI, VII, and VIII activity patterns in which autarkic agents
form blocking pairs cannot be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for an
agent linked in a matchings and a convener cannot be part of the sequence of activity patterns
Λ.

C XIII: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ N∗(Λ1). Let agents j
and s form a blocking pair because the PS* condition of Definition 3.4 is not satisfied and agent
s acts as a convener. Hence us( js) > −αs and u j(i j) < u j( js) + αs#Ns(Λ1).
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Consider activity pattern Λ2 = Λ1 ⊕
s { js}. For Λr = Λ1 it must be that agents i and j form

blocking pairs in some activity patterns. Note that {ii} ∈ Λ2 and thus agent i must form at least
one blocking pair as an autarkic agent. As proven in C I, II, III, VI, VII, and VIII activity
patterns in which autarkic agents form blocking pairs cannot be part of a sequence of activity
patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
an agent linked in a matchings and a convener such that the agent in the matching acts as a
convener cannot be part of the sequence of activity patterns Λ.

C XIV: Consider activity pattern Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ N∗(Λ1). Let agents j
and s form a blocking pair because the PS* condition of Definition 3.4 is not satisfied and agent
j acts as a convener. Hence

∑
h∈NsΛ1

us(hs) + αs[#Ns(Λ1) − 1] < us( js) + α j and u j( js) > −α j.
Consider activity pattern Λ2 = Λ1 ⊕

j { js}. For Λr = Λ1 it must be that agents h ∈ Ns(Λ1) and s
form blocking pairs in some activity patterns. Note that {hh} ∈ Λ2 for all h ∈ Ns(Λ1) and thus
each h ∈ Ns(Λ1) must form at least one blocking pair as an autarkic agent. As proven in C
I, II, III, VI, VII, and VIII, activity patterns in which autarkic agents form blocking pairs cannot
be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for an
agent linked in a matchings and a convener such that the convener of the cooperative matching
acts as a convener cannot be part of the sequence of activity patterns Λ.

C XV: Consider activity pattern Λ1 ⊆ Λ such that i ∈ N∗(Λ1) and j ∈ N∗(Λ1). Let agents
i and j form a blocking pair because the PS condition of Definition 3.4 is not satisfied. Hence∑

h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) and
∑

f∈N j(Λ1) u j( j f ) + α j[#N j(Λ1) − 1] < u j(i j).
Consider activity pattern Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agents h ∈ Ni(Λ1) form
blocking pairs with agent i and agents f ∈ N j(Λ1) form blocking pairs with agent j in some
activity patterns. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1) and { f f } ∈ Λ2 for all f ∈ N j(Λ1)
and each h ∈ Ni(Λ1) and each f ∈ N j(Λ1) must form at least one blocking pair as an autarkic
agent. As proven in C II, III, IV, VII, VIII, and XI, activity patterns in which autarkic agents
form blocking pairs cannot be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for
two conveners cannot be part of the sequence of activity patterns Λ.

C XVI: Consider activity pattern Λ1 ⊆ Λ such that i ∈ N∗(Λ1) and j ∈ N∗(Λ1). Let agents i
and j form a blocking pair because the PS* condition of Definition 3.4 is not satisfied. Without
loss of generality let

∑
h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) + α j#N j(Λ1) and u j(i j) > −α j.

Consider activity pattern Λ2 = Λ1 ⊕
j {i j}. For Λr = Λ1 it must be that agents h ∈ Ni(Λ1) form

blocking pairs with agent i in some activity patterns. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1) and
thus each h ∈ Ni(Λ1) must form at least one blocking pair as an autarkic agent. As proven in
C I, II, III, VI, VII, and VIII, activity patterns in which autarkic agents form blocking pairs
cannot be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
two conveners cannot be part of the sequence of activity patterns Λ.

CXVII: Consider activity pattern Λ1 ⊆ Λ such that {i j} and Ns(Λ1) = {t}with t ∈ N∗(Λ1. Let
agents j and s form a blocking pair because the PS condition of Definition 3.4 is not satisfied.
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Hence u j(i j) < u j( js) and us(st) + αt[#Nt(Λ1) − 1] < us( js).
Consider activity pattern Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and j form a
blocking pair in some activity patterns. Note that {ii} ∈ Λ2 and thus agent i form at least one
blocking pair as an autarkic agent. As proven in C I, II, III, VI, VII, and VIII, activity
patterns in which autarkic agents form blocking pairs cannot be part of a sequence of activity
patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for an
agent in a matching and an agent in a cooperative who does not acts as a convener cannot be
part of the sequence of activity patterns Λ.

C XVIII: Consider activity pattern Λ1 ⊆ Λ such that {i j} and Ns(Λ1) = {t} with t ∈ N∗(Λ1).
Let agents j and s form a blocking pair because the PS* condition of Definition 3.4 is not
satisfied and j acts as a convener. Hence u j( js) > −α j and us(st)+αt[#Nt(Λ1)−1] < us( js)+α j.
We will show that there is no activity patter Λq ⊆ Λ such that Nt(Λq) = Nt(Λ1).
A contradiction can be established following the same analysis as in C VIII.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
an agent in a matching and an agent in a cooperative who does not acts as a convener cannot be
part of the sequence of activity patterns Λ.

C XIX: Consider activity pattern Λ1 ⊆ Λ such that i ∈ N∗(Λ1) and N j(Λ1) = {s} with
s ∈ N∗(Λ1) and i , s. Let agents i and j form a blocking pair because the PS condition of
Definition 3.4 is not satisfied. Hence

∑
h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) and u j( js) +

αs[#Ns(Λ1) − 1] < u j(i j).
Consider activity pattern Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agent i and an agent
h ∈ Ni(Λ1) form a blocking pair in some activity patterns. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1)
and thus agent each agent h ∈ Ni(Λ1) forms at least one blocking pair as an autarkic agent. As
proven in C I, II, III, VI, VII, and VIII, activity patterns in which autarkic agents form
blocking pairs cannot be part of a sequence of activity patterns Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for a
convener and an agent in a cooperative who does not acts as a convener cannot be part of the
sequence of activity patterns Λ.

C XX: Consider activity pattern Λ1 ⊆ Λ such that i ∈ N∗(Λ1) and N j(Λ1) = {s} with
s ∈ N∗(Λ1) and i , s. Let agents i and j form a blocking pair because the PS* condition of
Definition 3.4 is not satisfied. Hence ui(i j) > −αi and u j( js) + αs[#Ns(Λ1) − 1] < u j(i j) +

αi#Ni(Λ1). We will shows that there cannot be an activity pattern Λq ⊆ Λ such that Ns(Λq) =

Ns(Λ1).
A contradiction can be established following the same analysis as in C VIII.

Therefore, a blocking pair in which the PS* condition of Definition 3.4 is not satisfied for
a convener and an agent in a cooperative who does not acts as a convener cannot be part of the
sequence of activity patterns Λ.

CXXI: Consider activity pattern Λ1 ⊆ Λ such that Ni(Λ1) = s with s ∈ N∗(Λ1) and N j(Λ1) =

{t}with t ∈ N∗(Λ1) and i , j. Let agents i and j form a blocking pair because the PS condition of
Definition 3.4 is not satisfied. Hence ui(is)+αs[Ns(Λ1)−1] < ui(i j) and u j( jt)+αt[#Nt(Λ1)−1] <
u j(i j).
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Consider activity pattern Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agents i and s form a
blocking pair in some activity patterns and agents j and t forma a blocking pair in some activity
pattern. Note that {i j} ∈ Λ2 and thus at least one of agents i and j forms at least one blocking
pair as an agent in a matching. As proven in C II, IV, VI, X, XI, XII, XIII, XIV, XVII, and
XVIII activity patterns in which agents in a matching form blocking pairs cannot be part of a
sequence of activity patterns Λ = (Λ1, . . . .Λr) such that Λr = Λ1.

Therefore, a blocking pair in which the PS condition of Definition 3.4 is not satisfied for two
agents linked in a cooperatives none of whom acts as a convener cannot be part of the sequence
of activity patterns Λ.

This completes the proof of Theorem 5.5.
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