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ABSTRACT

The main reason for the limited use of multivariate discrete
models is the difficulty in calculating the required probabilities.
The task is usually undertaken via recursive relationships which
become quite computationally demanding for high dimensions and
large values. The present paper discusses efficient algorithms that
make use of the recurrence relationships in a manner that reduces the
computational effort and thus allow for easy and cheap calculation of
the probabilities. Themost commonmultivariate discrete distribution,
the multivariate Poisson distribution is treated. Real data problems
are provided tomotivate the use of the proposed strategies. Extensions
of our results are discussed. It is shown that probabilities, for a large
family of multivariate distributions, can be computed efficiently via
our algorithms.
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1. INTRODUCTION

The multivariate Poisson distribution, while one of the most well
known and important multivariate discrete distributions, has not found
a lot of practical applications apart from the special case of the bivariate
Poisson distribution. The main problem that has limited the applicability
of multivariate Poisson models is the awkward probability function
which causes the inferential procedures to be quite complicated for
practical purposes.

Despite the deep theoretical development of the multivariate Poisson
distribution (see Johnson et al., 1997) there are only few applications due
to the aforementioned problems. Consider the relatively simple problem
of obtaining maximum likelihood (ML) estimates. In order to evaluate
the likelihood, one has to calculate the probability function at all the
observations. The probability function can be calculated via recurrence
relationships as otherwise exhausting summations are needed. This can
be quite time consuming (especially for high dimensions) and thus
efficient algorithms are needed in order to facilitate the computations.
Applying merely the recurrence relationships without trying to use them
in an optimal way can be problematic and time demanding, too.

To further motivate our approach consider a problem with, say,
5-dimensional data. For example, the data may represent the purchase
of 5 different products of a household, where each household is observed
for different time periods. In fact this implies that we work with
rates instead of counts, but again a multivariate Poisson model seems
plausible. If the number of households is not very large, this implies
that we will have a large number of cells with zero frequency, so the
calculation of the entire 5-dimensional space of all combinations for
the number of purchases of the five products is a very bad strategy.
For instance, if the maximum number of purchases for each product
is denoted as zi, then according to the usual strategy of creating
the entire probability table, one has to calculate

∏5
i=1�zi + 1� different

probabilities. Moreover, if one works with rates rather than counts,
this implies that the parameters for each individual are different and
such a table must be created for each observation. Clearly, calculating
all these probabilities is awkward and time consuming. We would be
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pleased if we had to calculate fewer probabilities and especially only
those for non-zero frequency cells which contribute to the likelihood.
This simplified example shows that efficient algorithms for the
computation of probabilities can be quite helpful for improving the
applicability of the model.

The purpose of the present paper is the proposal of efficient
strategies for calculating the probabilities based on the existing recurrence
relationships. The proposed approach can reduce considerably the
computing time especially for large dimensions and/or high values of the
underlying variables.

The remaining of the paper proceeds as follows. In Sec. 2 we
introduce briefly the multivariate Poisson distribution and the recurrence
relationships available, while at Sec. 3 we discuss the bivariate case.
The bivariate case, offers interesting geometric interpretation of the
proposed algorithms, adding insight to our approach. The algorithms
are generalized in Sec. 4 for higher dimensions. In Sec. 5 we discuss
the practical usefulness of the proposed strategy exploiting the gain
in computing effort by using our approach. Section 6 discusses the
potential generalization of our approach to a variety of other bivariate
distributions and their multivariate extensions. Finally, concluding
remarks can be found in Sec. 7.

2. THE MULTIVARIATE POISSON DISTRIBUTION

The multivariate reduction technique has been used to create
the multivariate Poisson distribution. This technique has been used
extensively for the construction of multivariate models (see e.g., Mardia,
1971). The idea is to start with some independent random variables
(which are generally elementary) and to create new ones by considering
some functions of the original variables. Then, since the new variables
contain jointly some of the original ones, a kind of structure is imposed
creating multivariate models.

Suppose that Yi are independent Poisson random variables with
mean �i, for i = 0� � � � � n and let Xi = Y0 + Yi, i = 1� � � � � n. Then
the random vector X = �X1� X2� � � � � Xn� follows a n-variate Poisson
distribution, where n denotes the dimension of the distribution.

The joint probability function is given by

P�X = x� = P�X1 = x1� X2 = x2� � � � � Xn = xn�

= exp
(
−

n∑
i=0

�i

) n∏
i=1

�
xi
i

xi!
s∑
i=0

[ n∏
j=1

(
xj
i

)]
i!
(

�0∏n
k=1 �k

)i
(2.1)
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where s = min	x1� x2� � � � � xn
. This distribution is denoted as n− P���,
where � = ��0� � � � � �n�. Marginally each Xi follows a Poisson distribution
with parameter �0 + �i. Parameter �0 is the covariance between all the
pairs of random variables. If �0 = 0 then the variables are independent
and the multivariate Poisson distribution reduces to the product of
independent Poisson distributions.

The above defined version of multivariate Poisson distribution is
a reduced version of a more general model used by many authors
(Johnson et al., 1997; Loukas and Kemp, 1983; Mahamunulu, 1967)
which assumes another more complicated structure. However, this
reduced version is the only one used for real applications. The literature
for the multivariate Poisson distribution is large and many references,
as well as historical remarks, can be found in Johnson et al. (1997)
and Krummenauer (1998). The bivariate Poisson distribution has been
studied in more depth. The reader can refer to the book of Kocherlakota
and Kocherlakota (1992).

As mentioned, the main obstacle which limits the usage of discrete
multivariate distributions in practice, is the complexity of calculating
the probability function. The summations needed might be exhausting
in some cases especially when the dimension is large. Computation of
the probabilities can be accomplished via recursive schemes. Kano and
Kawamura (1991) provided a general scheme for constructing recurrence
relations for multivariate Poisson distributions.

Let us introduce some notation to facilitate the exposition. Let 0, 1
denote the vector with all elements equal 0 and 1 respectively and ei the
vector with all elements 0 except from the ith element which is equal
to 1. Using this notation, we may define a recursive scheme for the
multivariate Poisson distribution defined in (2.1) using the relationships:

xiP�X� = �iP�X − ei�+ �0P�X − 1�� i = 1� � � � � n (2.2)

P�X1 = x1� � � � � Xk = xk� 0� 0� � � � � 0� = P

(
X −

k∑
i=1

ei

) k∏
i=1

�i
xi

(2.3)

for k = 1� � � � � n− 1, where the order of Xi’s and 0’s can be interchanged
to cover all possible cases, while P�0� = exp�−∑n

i=0 �i�.
It can be seen that, since at every case at least one of the xi’s equals

0, i.e., s = 0, the sum appearing in the joint probability function has
just one term and hence the joint probability function takes the useful
form P�X� = exp�−�0�

∏n
i=1 Po�xi � �i�, where Po�x � �� = exp�−���x/x!

denotes the probability function of the simple Poisson distribution with
parameter �. Then (2.3) arises by using the recurrence relation for the
univariate Poisson distribution.
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It is clear that as n increases the computational effort increases, too.
In fact for a n-variate Poisson model one has to initialize in this way∑n−1

i=1

(
n
i

)
probabilities of the form P�X1 = x1� � � � � Xk = xk� 0� 0� � � � � 0�,

for k = 1� � � � � n− 1 interchanging the order of zeroes and xi’s. For
example, if n = 4, 14 different recursive schemes must be run. The
computational burden is large. However, the use of the above defined
recursions seems to be the only way to calculate the probability function.

In the next section we will treat the bivariate model in order to give
insight into the proposed algorithms and improve the understanding of
the problem treated in this paper.

3. THE BIVARIATE CASE

Consider the recurrence relationships defined in (2.2). The general
idea for calculating the probabilities is to start from P�0� and then obtain
all the other probabilities via the recursive schemes defined above. The
question that naturally arises is which one of the relationships one has
to use and/or can we improve the computing time needed by combining
the relationships? Moreover, is it always true that combining, somehow,
the relationships would lead to a more efficient algorithm? These are the
questions that we will try to answer in the sequel. At this section we will
discuss the simplest but intuitive case, that of a bivariate model.

3.1. Graphical Presentation

The bivariate Poisson distribution has joint probability function
given by:

P�x� y� = P�X = x� Y = y�

= e−��0+�1+�2�
�x1
x!

�
y
2

y!
s∑
i=0

(
x
i

)(
y
i

)
i!
(
�0
�1�2

)i
�

where s = min	x� y
. According to the general recurrence in (2.2) we have
that:

xP�x� y� = �1P�x − 1� y�+ �0P�x − 1� y − 1�
yP�x� y� = �2P�x� y − 1�+ �0P�x − 1� y − 1��

(3.1)

with the convention that P�x� y� = 0, if s < 0.
The P�0� 0� probability can be obtained directly without special

effort and the other probabilities will be derived from it. The key idea is
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that if one of the coordinate values is 0, then the recurrence relationship
is simpler and thus it seems reasonable to try to move towards to one
of the axes. Suppose that we are interested in calculating the probability
at �4� 5�. One may use only one recurrence relationship to calculate the
probability P�X = 4� Y = 5�. Figures 1a and 1b depict the entire paths
and the probabilities that one must compute in order to obtain the
requisite probability by using only one of the relationships. The arrows
indicate the probabilities needed in order to calculate each point. It is

Figure 1. Four different approaches for calculating the probability at the
point (4, 5). The first two (a and b) make use of only one of the recurrence
relationships, while the other figures (c and d) make use of both recurrence
relationships. The arrows indicate the points needed in order to obtain a specific
point. It is clear that if we use a combination of the two relationships we need
less points.
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clear that by using only one recurrence relationship we calculate much
more probabilities than what we really need.

More formally, assume that we are interested in calculating P�x� y�
where without loss of generality x ≤ y. Geometrically, using only the first
of the recurrences in (3.1) we obtain the entire triangle defined by the
points �x� y�, �0� y� and �0� y − x� until to get to the y axis (where we can
use the simplified recurrences in (2.3) to move to the (0, 0) point). On
the other hand if we had used only the second of the recurrences in (3.1)
then we would obtain the trapezoid defined by �x� y�� �x� 0�� �0� 0� and
�0� y − x�.

Consider now the case where we may combine the two recurrence
relationships. Figures 1c and 1d describe an algorithm where the
two relationships are used in a successive manner (in 1c we used firstly
the relationship which “moves” towards to the x axis and then the other
one, while in 1d we did the opposite). Despite the fact that both of these
paths gave the same number of points needed to estimate P�4� 5� we
will prefer the first one since it contains 3 points where at least one of
the coordinates is 0 in contrast to 1d where there are 2 such points.
Therefore it is clear from these figures that combining the relationships in
the right order reduces the number of points needed. This reduction can
be dramatic for higher dimensions and for large x and/or y. However,
it must be pointed out that the situation is much more complicated for
higher dimensions as we will see in Sec. 4.

Concluding, we have seen graphically that combining the two
relationships one can improve the speed for calculating probabilities.

3.2. The Proposed Algorithm

We are interested in calculating P�x� y� and assume that x ≤ y. We
will use the recurrence relationships (3.1) to move towards �0� 0�. Given
that both the recurrence relationships contain the point �x − 1� y − 1�
after x uses we will hit the y axis at �0� y − x�. Thus it is wise to use the
recurrence relationships in such a way that we will stay as close to the
diagonal connecting the points �x� y�� �0� y − x� as possible. This can be
done by using both the recurrence relationships in an alternating order,
since in this way after the first use every time we will move to a new point
and an existing one. More specifically: from �x� y� we move to �x − 1� y�
and �x − 1� y − 1�, then applying the other recurrence relationship on
the point �x − 1� y� we get again the �x − 1� y − 1� and the point �x − 2�
y − 1�. Thus from �x� y� after a full use of the recurrence relationships
we get to to the �x − 1� y − 1� and �x − 2� y − 1� points, having
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used one intermediate point, the point �x − 1� y�. So if we call a step
the use of both the recurrence relationships in the order: first the one
which moves to the closest axis and second the other one, then at the
end of every but the first step we have introduced two new points (in the
first step we have introduced an extra intermediate point not being used
later).

Thus, in order to stay as close as possible to the diagonal parallel
to the first diagonal of the axes we need to use both the recurrence
relationships. Given that we are interested in intersecting an axis as soon
as possible (because afterwards we can move faster to the (0, 0) point) we
will do the first move parallel to the axis with the minimum coordinate.
Thus starting from �x� y� after x − 1 steps we will have the points �0�
y − x + 1� and �1� y − x + 1�. Then we will use only the first recurrence
relationship of a full step to move from �1� y − x + 1� to �0� y − x + 1�
and �0� y − x�. So, after 2�x − 1�+ 1 uses of the recurrence relationships
we passed through 2�x − 1�+ 2 = 2x points where the last 2 points are
on the maximum coordinate axis: �0� y − x + 1� and �0� y − x�. Then we
can move from the �0� y − x + 1� to the (0, 0) point using y − x + 1 times
the recurrence relationship (2.3). So the proposed algorithm to calculate
the P�x� y� is the following:

3.3. Algorithm

Find the minimum coordinate (assume x ≤ y).
Calculate P�0� 0�
FOR k = 1 TO y − x + 1

P�0� k� = �2
k
P�0� k− 1�

END
FOR k = 1 TO x − 1

P�k� y − x + k� = �1
k
P�k− 1� y − x + k�+ �0

k
P�k− 1� y − x + k− 1�

P�k� y − x + k+ 1� = �2
y − x + k+ 1

P�k� y − x + k�

+ �0
y − x + k+ 1

P�k− 1� y − x + k�

END

P�x� y� = �1
x
P�x − 1� y�+ �0

x
P�x − 1� y − 1�
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Remark. If s = 1 there is no need to combine the relationships, as the
minimum coordinate will be zeroed after the first step.

4. THE ALGORITHMS FOR THE n-VARIATE
POISSON DISTRIBUTION

While the bivariate case gave interesting graphical representation, in
more dimensions the problem is much different. In the sequel we will
provide two different approaches. The former one uses all n recurrence
relationships while the latter uses only one of them. We will start with
what we will call the full algorithm to emphasize that it uses all n
recurrence relationships.

4.1. The Full Algorithm

We are interested in calculating the probability P�x1� � � � � xn� from
a n-variate Poisson. Without loss of generality, assume that x1 ≤ x2 ≤
· · · ≤ xn. The algorithm that we propose consists of two stages. In the
first stage using the recurrence relationships (2.2) we will try to move
from the X point to the closest hyperplane where at least one of the
coordinates becomes 0 and then at the second stage use of the simplified
recurrence relationships (2.3) will get us to the 0 point.

Stage 1. Since all the recurrence relationships (2.2) contain the point
X − 1, no matter which ones and in what order they will be used we will
move along the “diagonal” defined by the points X and X − 1 towards
the hyperplane where the x1 coordinate becomes 0. Thus we will try to
make use of (2.2) in such a fashion so as to stay as close as we can to this
“diagonal”. This can be done adopting the scheme presented in Fig. 2.

Starting from the point X we use firstly the recurrence relationship
which moves parallel to the axis of x1 (the minimum coordinate). This
will give two new points, one on the diagonal X − 1 and a second
one. We leave the diagonal point as it is and we break the other one
using the recurrence relationship which moves parallel to the x2 axis. We
repeat this break up of the non-diagonal elements using every time the
recurrence relationship of the next ordered coordinate. At the nth break
up we get a new diagonal point and the X − 1 as the non-diagonal. If we
call a step the use of all recurrence relationships in the above described
order, then once a step is completed we have moved to n new points
(in the first step we have passed also through n− 1 extra intermediate
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Figure 2. The path of a complete step in the general n-variate Poisson
distribution when all the recurrence relationships are used (full algorithm). It is
evident that after completing one step we end up with exactly n points since
there is always one point that it is duplicated.

points; the non-diagonal elements). The new n points that we have been
moved to, once the first step is completed, are the following: X − 1,
X − 1− e1� � � � �X − 1−∑n−1

k=1 ek.
Starting again the break up from the X − 1 point and following the

same strategy as the one described above, upon completion of the second
step, we will have defined n new points (here there are no intermediate
points since for every break up we get a new diagonal element and
a non diagonal which is one of the diagonal of the previous step).
The n new points at the end of the second step are: X − 2× 1�X − 2
× 1− e1� � � � �X − 2× 1−∑n−1

k=1 ek.
Therefore after x1 − 1 steps we will have the following n points,

where all but the first one belong to the hyperplane defined by
the coordinate of x1 being 0: X − �x1 − 1�1�X − �x1 − 1�1− e1� � � � �
X − �x1 − 1�1−∑n−1

k=1 ek.
In order to complete the Stage 1 of our strategy we will break the

first point of the last step using the recurrence relationship involving the
x1 coordinate which will give the X − �x1 − 1�1− e1 (already existing)
and the X − x11 point. Thus after x1 − 1 complete steps we need to
calculate 1+ �n− 1�+ n�x1 − 1�+ 1 = nx1 + 1 points in order to move



ORDER                        REPRINTS

Multivariate Poisson Probabilities 281

from the X point to the n points over the closest hyperplane of dimension
n− 1. Note that the above formula holds only for x1 > 1, since if x1 ≤ 1
we can move to the axis by just one move.

Stage 2. At the end of the first stage of our strategy we have moved
from X to n points over the hyperplane of dimension n− 1 where all
have 0 in the spot of the x1 coordinate, namely the points X − x11�
X − �x1 − 1�1− e1� � � � �X − �x1 − 1�1−∑n−1

k=1 ek. From all these n points
the one closest (with respect to the Euclidean norm) to 0 is the X − x11
point. Using (2.3) we will map the rest n− 1 points to this point. Then
from this point we will move “diagonally” down to 0. More specifically
using (2.3), x2 − x1 times we will move from �0� x2 − x1� � � � � xn − x1�
to �0� 0� x3 − x2� � � � � xn − x2�, i.e., we will move to the hyperplane of
dimension n− 2 where in the spot of both x1 and x2 coordinate we
have 0’s. Working similarly we will get after �xn − xn−1�+ �xn−1 − xn−2�
+ · · · + �x2 − x1� = xn − x1 steps to the 0 point.

Summarizing we observe that following this strategy in order to
move from the point X to 0 we need to go through nx1 + 1 points in
stage 1 and xn − x1 points in stage 2. Thus we need:�n− 1�x1 + xn + 1
points to calculate. A formal description of the full algorithm can be
found in the Appendix 1.

Next we will turn to the algorithm which makes use of only one
recurrence relationship that we will call the flat algorithm.

4.2. The Flat Algorithm

Similarly as before we will calculate P�X� in two stages. In the first
one we will move from X to the closest hyperplane using only one of the
recurrence relationships (2.2) and in the second stage we will move down
to the 0 point by the simplified recurrence relationships (2.3).

Stage 1. Since we need to move to the closest hyperplane using only
one recurrence relationship we will use the one which moves in direction
“parallel” to the minimum coordinate axis, i.e.,

x1P�X� = �1P�X − e1�+ �0P�X − 1�

Thus starting from X and applying the recurrence relationship we get the
two new points X − e1 and X − 1. Then applying the same recurrence
relationship to these 2 points we are getting 3 new points: X − 2e1,
X − e1 − 1 and X − 2× 1. Figure 3 shows how this break up continues
until we reach the closest hyperplane defined by x1 = 0.
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Figure 3. The path till the minimum coordinate is zeroed for the case of the
flat algorithm. In every level the number of points is one more than those of
the previous level.

If we call a step the use of the recurrence relationship to k points
then upon completion of this step we will get k+ 1 new points. Thus we
will reach the closest hyperplane after x1 steps having gone through 1+ 2
+ · · · + �x1 + 1� = �x1 + 1��x1 + 2�/2 points. The x1 + 1 points lying
over the closest hyperplane are: X − x1e1�X − x1e1 −

∑n
i=2 ei�X − x1e1

− 2
∑n

i=2 ei� � � � �X − x1e1 − x1
∑n

i=2 ei = X − x11. Note that all these
points lying over the line connecting X − x1e1 and X − x11.

Stage 2. At the second stage where we have been moved to the closest
hyperplane we get x1 + 1 points with the point X − x11 being the one
closest to 0. We will move from this point all the way down to the
beginning of the axes in the exact same way as we did for the full
algorithm. Therefore we need xn − x1 extra points.

Summarizing with this algorithm we need �x1 + 1��x1 + 2�/2 points
to reach the closest hyperplane and xn − x1 to get to 0. Therefore the
flat algorithm requires �x1 + 1��x1 + 2�/2+ �xn − x1� points. A formal
description of the algorithm can be found in Appendix 2.

4.3. Comparing the Flat and the Full Algorithms

Since both the algorithms act the same way at stage 2 where the
closest hyperplane has been reached we will compare only the first stage
of these two algorithms. What is the philosophy hidden behind these
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two algorithms? In the flat algorithm we move from the point X to
the closest hyperplane by moving along a subspace of dimension 2
(plane), independently of the dimension of X. On the other hand the
full algorithm tries to stay as close as possible to the main diagonal
(defined by the points X and X − x11) by “travelling” through all the
dimensions and moving a n-polytope along the main diagonal until it
reaches the closest hyperplane. In the following Lemma we will see under
what conditions we should prefer the one over the other algorithm.

Lemma. When we have to calculate the n-variate Poisson probability
P�X� = P�x1� � � � � xn� then:

(i) If min	xi
 < 2n− 3, use the flat algorithm.
(ii) If min	xi
 > 2n− 3, use the full algorithm.
(iii) If min	xi
 = 2n− 3, it is indifferent which algorithm you will use.

Proof. If min	xi
 ≤ 1 then clearly the two algorithms are equivalent.
Assume that min	xi
 > 1. Since both the algorithms behave the same
way once they get to the closest hyperplane (i.e., both require max	xi

−min	xi
 points to get to 0) we will compare the number of points
needed from each algorithm to reach from X to the closest hyperplane.
If we will call p and p′ the number of points required by the flat and
the full algorithms respectively and s = min	xi
 we have p = �s + 1�
× �s + 2�/2 and p′ = ns + 1. Thus we have

p− p′ = 1
2
s2 + 3

2
s + 1− ns − 1 = 1

2
s�s + 3− 2n�

Therefore in the case where s = min	xi
 = 2n− 3 we get p = p′ and both
algorithms will require the exact same amount of points to reach the
closest hyperplane. If min	xi
 < 2n− 3�min	xi
 > 2n− 3� the flat (full)
algorithm should be used since p < p′�p > p′�.

Table 1 presents the value of the minimum coordinate for a range
of different dimensions n, in order the flat algorithm to be more
efficient. Clearly for n = 2 the flat algorithm is always inferior, while
for n = 3 only if min	xi
 = 2 the flat algorithm is preferable. For higher
dimensions as one can see from Table 1 the flat algorithm is preferable

Table 1. The trade-off between dimension and minimum
coordinate for superiority of the flat algorithm.

n 2 3 4 5 8 10 12 15 20
min	xi
 0 2 4 6 12 16 20 26 36
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(for instance if n = 10 then min	xi
 needs to be higher than 16 in
order to prefer the full algorithm). Note that one may combine the two
algorithms for creating more efficient algorithms but this is beyond the
scope of the present paper.

5. EXAMPLES AND ILLUSTRATIONS

5.1. Application: ML Estimation

In a recent paper, Karlis (2003) proposed ML estimation for the
n-variate Poisson distribution via an EM scheme. Consider the more
general case, that of rates rather than simple counts. Now the vector of
observations Xi = �X1i� X2i� � � � � Xni�� i = 1� 2� � � � � N follows a n-variate
Poisson distribution with parameter vector �ti, denoted as P�Xi� �ti�,
where � = ��0� �1� � � � � �n� and ti can represent time, area, etc. This seems
a plausible model for certain practical situations with count data. For
example if the data are the occurrences of different type of diseases
in different areas, then ti’s could be the populations or the area sizes.
In marketing research if the data consists of the purchases of different
products the ti’s could be different observational periods etc.

The loglikelihood takes the complicated form

L =
N∏
i=1

P�Xi� �ti�

and numerical methods are needed. No matter what numerical method
will be chosen, we need to calculate the probabilities several times, with
different parameters each time. Note also that, since every observation
has a different ti, the parameters of the n-variate distribution are
different for each observation. Thus, even for the calculation of the
loglikelihood, we have to compute all these probabilities and thus we
need efficient ways to do so.

Let us go back to the EM approach proposed. The description of
the algorithm is the following:

E-step: Using the data and the current estimates after the kth
iteration ��k�, calculate the pseudo-values

si = E�Y0i �Xi� ti� �
�k�� = �0ti

P�Xi − 1�
P�Xi�

� i = 1� � � � � N

M-step: Update the estimates by �0
�k+1� =∑N

i=1 si/
∑N

i=1 ti and
�j
�k+1� = x̄j/t̄ − �0

�k+1�� j = 1� � � � � n.
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If some convergence criterion is satisfied stop iterating otherwise go
back to the E-step for one more iteration.

Looking at the E-step it is obvious that a large number of
probabilities is required in every iteration. We are not interested in
calculating the entire probability table but merely two probabilities for
each observation. Taking into account the fact that we need a lot of
iterations, i.e., we have to calculate a lot of probabilities in a repetitive
manner, it is clear that efficient and quick algorithms for obtaining the
probabilities are of special importance.

5.2. Numerical Comparison

The purpose of this section is to present the number of probabilities
needed for several different cases of varying dimensions. It must be
noted that the recurrence relationships defined in (2.2) are based on two
multiplications and one addition while the simplest recurrence (2.3) (i.e.,
when at least one of the coordinates is 0) is based on one multiplication
only. We will compare the number of different probabilities that we need
for the calculation of the target probability. Our aim is two fold: the
first one has to do with the feasibility of the calculations, we believe that
using efficiently the recurrence relationships the computational burden
is reduced and thus the model is applicable in many situations without
special effort, while the second point has to do with the comparison of
the two algorithms and a general guidance for their use.

In Table 2 one can see the number of probabilities need to be
calculated for various dimensions, using the two algorithms. In fact,
since the number of points that we need to calculate is a function
of the minimum and the maximum coordinates, we present the fewest
number of points needed (attainable by any of the two algorithms).
The purpose of this table is to show that even for problems that seem
quite complicated, as for example when dimension n = 10, the number
of computations needed is not prohibitively large and thus even such
complicated models can be used in practice without considerable effort.

6. EXTENSIONS

6.1. General Multivariate Poisson Models

The proposed algorithms can be extended to two different avenues.
First, one may consider a more general multivariate Poisson that allows
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Table 2. The total number of points need to be calculated for various configu-
rations (a or/and b indicate whether the Flat or/and Full Algorithms respectively
achieve the minimum number of points). As one can see even for complicated
cases with large dimension the number of calculation is relatively small.

Number Number
Dimension Min Max of points Dimension Min Max of points

2 0 5 6 ab 5 0 5 6 ab
2 0 10 11 ab 5 0 10 11 ab
2 5 10 16 b 5 5 10 26 a
2 5 15 21 b 5 5 15 31 a
2 10 15 26 b 5 10 15 56 b
2 10 20 31 b 5 10 20 61 b
3 0 5 6 ab 10 0 5 6 ab
3 0 10 11 ab 10 0 10 11 ab
3 5 10 21 b 10 5 10 26 a
3 5 15 26 b 10 5 15 31 a
3 10 15 36 b 10 10 15 71 a
3 10 20 41 b 10 10 20 76 a

full structure (see, e.g., Mahamunulu, 1967). Its derivation is based on a
general multivariate reduction scheme where there are terms for all the
pairwise covariances, covariances among 3 variables and so on.

Assume, that Yi� i = 1� � � � � k are independent Poisson random
variables and A is a n× k matrix with zeros and ones. Then the vector
X = �X1� X2� � � � � Xn� defined as X = AY follows a n-variate Poisson
distribution.

The most general form assumes that A is a matrix of size n× �2n − 1�
of the form

A = �A1� A2� A3� � � � � An�

where Ai, i = 1� � � � � n are matrices with n rows and
(
n
i

)
columns. The

matrix Ai contains columns with exactly i ones and n− i zeros, with no
duplicate columns, for i = 1� 2� � � � � n. Thus An is the column vector of
1’s while A1 becomes the identity matrix of size n× n.

For example, the n-variate Poisson distribution defined in Sec. 2 uses
A = �A1� An�.

The fully structuredmultivariate Poissonmodel has not found any real
data applications for two reasons. The first has to do with the complicated
form of the probability function that seems to be an unsurmountable
problem. The second reason is that it imposes too much structure.
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Kawamura (1985) and Kano and Kawamura (1991) described
recurrence relations for this general form. Clever combination of the
recurrence relations can help in obtaining the probabilities without
spending much of computing time, especially for large dimensions. This
would lead to the easier applicability of such complicated models.

6.2. Other Multivariate Models Defined via
Recurrence Relationships

The second way to generalize the findings has to do with other
families of multivariate discrete distributions that possess similar
recurrence relationships. It is important to note that there are
several families of bivariate distributions defined via their recurrence
relationships, generalizing existing results for the univariate case.

For example, Panjer (1981) examined the family for distributions
defined via recurrence relations of the form

P�K = k� =
(
�+ �

k

)
P�K = k− 1�� k ≥ 1� �� � ≥ 0

denoted as K ∼ ���� ��. It is important to note that this family contains
the well known Poisson, geometric, binomial and negative binomial
distributions. Hesselager (1996) defined a bivariate distribution using
trivariate reduction of variates from this family of distributions. Namely
he gave recurrence relationships for bivariate distributions defined as
X = R0 + R1 and Y = R0 + R2 where Rj ∼ ���j� �j�, j = 0� 1� 2 and they
are mutually independent.

Then the resulting bivariate distribution has recurrence relationships
of the form

P�x� y� =
(
�0 +

�0
x

)
P�x − 1� y − 1�+

(
�1 +

�1
x

)
P�x − 1� y�

+
(
�0�1 +

�1�0 + �0�1
x

)
P�x − 2� y − 1�� x ≥ 1�

P�x� y� =
(
�0 +

�0
y

)
P�x − 1� y − 1�+

(
�2 +

�2
y

)
P�x� y − 1�

+
(
�0�2 +

�2�0 + �0�2
y

)
P�x − 1� y − 2�� y ≥ 1�

respectively, assuming that P�x� y� = 0 if min	x� y
 < 0.
One can easily verify that using only a single relationship the

situation is similar to the one depicted in Figs. 1a and 1b, where the
complete triangle (or trapezoid) must be enumerated. On the contrary,
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by considering alternating between the two relationships one can save
computing time. The bivariate Poisson model arises if �j = 0� j = 0� 1� 2.
Karlis (2003) examined the bivariate Charlier series distribution of
Papageorgiou and Loukas (1995) which assumes that Yi ∼ Po��ip�,
i = 1� 2 and Y0 ∼ Bin�N� p�.

Multivariate generalization of the above model is straightforward.
Using similar arguments as in Hesselager (1996) one can derive similar
recurrence relationships for multivariate models. Our algorithms can be
used for efficient calculation of the probabilities.

A similar family of bivariate distributions is the one proposed by
Wahlin and Paris (2000) with recurrence relationships of the form:

P�x� y� = �
min	x�y
∑
k=1

q�k�P�x − k� y − k�+ �P�x − 1� y�

and symmetric relationships with respect to y, where �� � are parameters
and q�k� a function not depending on the probabilities. One can easily
see that if q�k� = 0 for k > 1 then the bivariate Poisson case is deduced.

Some known bivariate distributions with such recurrence
relationships are the bivariate negative binomial distribution and the
bivariate Poisson-inverse Gaussian distribution (see, also, Kocherlakota
and Kocherlakota, 1992). If q�k� �= 0 for k > 1, our algorithms still
apply since the new relation just adds points at the diagonal. Again
generalization to higher dimensions is straightforward. The derivation
of the distributions can be represented, again, as a trivariate reduction.

For univariate distributions there are a lot of families defined
via the form of their recurrence relationships. One can derive similar
relationships for bivariate extensions based on trivariate reduction
schemes. This is beyond the scope of the present paper.

7. CONCLUDING REMARKS

In the present paper we developed efficient algorithms for calculating
multivariate probabilities for a variety of multivariate models. Among
them the multivariate Poisson distribution is, perhaps, the most
prominent member. It is shown that the calculation of the probabilities,
even in the multivariate case are affordable, while a guidance was given
about which algorithm is preferable in every situation.

The importance of such procedures for multivariate discrete
distributions is obvious. For bivariate distributions a complete enume-
ration of the probability function might not be of special effort, but as
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the dimension increases there are more cells with zero frequency and,
hence, without need for evaluating the probability function at these
points. So, efficient algorithms can save considerable computing time for
such probabilities.

On the other hand, for a variety of models the probabilities must be
calculated repetitively for different parameterizations and the complete
enumeration of the probability table is totally unnecessary. We gave an
example where the EM iterations need the evaluation of the probabilities
in a series of points. Keeping in mind that the EM algorithm is
applicable to all the cases where a trivariate reduction schemes has been
used, it is obvious that efficient algorithms for the probabilities are
important for speeding up the estimation task.

APPENDIX 1: THE FULL ALGORITHM

Algorithm for Stage 1

From the algorithm of stage 2 we would have given the n points on
the hyperplane closest to the X point: X − x11, X − �x1 − 1�1− e1, � � � ,
X − �x1 − 1�1−∑n−1

k=1 ek.

The Algorithm proceeds as:

P�X − �x1 − 1�1� = �1P�X − �x1 − 1�1− e1�+ �0P�X − x11�

FOR l = 2 TO x1 − 1 (OUTER LOOP)

P

[
X − �x1 − l�1− n−1∑

k=1
ek

]
= �n
xn − �x1 − l�

P�X − �x1 − �l− 1��1�

+ �0
xn − �x1 − l�

P

[
X − �x1 − �l− 1��1− n−1∑

k=1
ek

]
FOR i = n− 2 DOWN TO 1 (INNER LOOP)

P

[
X − �x1 − l�1− i∑

k=1
ek

]
= �i
xi − �x1 − l�

P

[
X − �x1 − l��1− i+1∑

k=1
ek

]
+ �0
xi − �x1 − l�

P

[
X − �x1 − �l− 1�1− i∑

k=1
ek

]
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END (INNER LOOP)

P
[
X − �x1 − l�1

]
= �1

l
P
[
X − �x1 − l�1− e1

]+ �0
l
P
[
X − �x1 − �l− 1��1

]
END (OUTER LOOP)

P�X� = �1
x1
P�X − 1�+ �0

x1
P�X − 1− e1�

Algorithm for Stage 2

Calculate P�0�

FOR i = 1 TO xn − xn−1

P�i en� =
�n
i
P��i− 1�en�

END

FOR l = n− 1 DOWN TO 2 (OUTER LOOP)

FOR i = 1 TO xl − xl−1 (INNER LOOP)

P

[
i el +

n∑
k=l+1

�xk − xl + i�ek

]
= �l

i

n∏
k=l+1

�k
�xk − xl + i�

P

[
�i− 1�el +

n∑
k=l+1

�xk − xl + i− 1�ek

]
END (INNER LOOP)

END (OUTER LOOP)

At this point we have calculated the X − x11 point. Then we need to
calculate the rest n− 1 points to have the complete set of points needed
from the algorithm of stage 1 to run.

P

[
X − �x1 − 1�1− n−1∑

k=1
ek

]
= �n
xn − x1 + 1

P�X − x11�

FOR i = n− 2 TO 1

P

[
X − �x1 − 1�1− i∑

k=1
ek

]
= �i+1

xi − x1 + 1
P

[
X − �x1 − 1�1− i+1∑

k=1
ek

]
END
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APPENDIX 2: THE FLAT ALGORITHM

Algorithm for Stage 1

From the algorithm of the second stage (provided in Appendix 1)
we will have available the x1 + 1 points on the hyperplane closest to the
X point: X − x1e1, X − x1e1 −

∑n
i=2 ei, X − x1e1 − 2

∑n
i=2 ei, � � � , X − x1e1

− x1
∑n

i=2 ei = X − x11�

FOR l = 1 TO x1 − 1 (OUTER LOOP)

FOR m = 0 TO x1 − l (INNER LOOP)

P

[
X − �x1 − l�e1 −m

n∑
i=2

ei

]
= �1

l
P

[
X − �x1 − l+ 1�e1 −m

n∑
i=2

ei

]
+�0
l
P

[
X − �x1 − l+ 1�e1 − �m+ 1�

n∑
i=2

ei

]
END (INNER LOOP)

END (OUTER LOOP)

P�X� = �1
x1
P�X − e1�+

�0
x1
P�X − 1�
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