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Abstract 

We suggest a model for a market, the Marseille wholesale fish market, in which 
purchases do not correspond to standard competitive demand. We use nonparamet~~ 
methods to detect the properties of price-quantity relations which reveal ‘strategic 
demand’. Our data over three months include price quantity details of each transaction 
for each fish, and the identities of the buyers and sellers. The observed distributions of 
prices are stable over time, thus the market can be treated as a repeated game. Strategic 
demand curves are obtained by local fitting. They are downward-sloping at the aggregate 
level but not in general at the individual level. Thus regularities are generated by 
aggregation rather than derived from individual behaviour. 
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I. Introduction 

In economics, aggregate behaviour is often tested to see if it meets restrictions 
that can be derived from individual maximising behaviour. Thus it is common 
practice to treat data arising from aggregate purchases of some commodity over 
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time as if these were the expression of the competitive demand of some repre- 
sentative individual. This approach involves a number of implicit assumptions, 
in particular that the underlying micro-data observed can be thought of as cor- 
responding to individual Walrasian demand, and furthermore that aggregation 
considerations do not invalidate the use of restrictions derived from individual 
behaviour. 

In this paper we find, empirically, that, for the particular market that we 
study, properties which we show to hold at the aggregate level and which might 
be thought of as ‘downward-sloping demand curves’ are not derived from 
similar properties at the individual level. Furthermore when this market is 
appropriately modelled we show that there is no theoretical reason to expect 
any such simple relation between individual and aggregate behaviour. In this we 
are following directly in the line of work by Becker (1962)’ who showed that 
downward-sloping demand curves at the market level could be derived from 
random individual choice behaviour subject only to a budget constraint. Where- 
as he summarised his result as saying that ‘households may be irrational and yet 
markets quite rational’, a better summary of our results would be that ‘sophisti- 
cated and complicated individual behaviour may lead to simple aggregate 
properties’. 

In particular, we will be concerned with the properties of the purchases of 
particularly perishable goods, different types of fish, for which we have data at 
the individual level, from the Marseille fish market. Although fish markets have 
been widely used as an example in the economic literature, we will argue that, for 
several reasons, it is inappropriate to think of purchases on such markets as 
corresponding to Walrasian demand. Having briefly described the type of 
market involved, we then propose a simple theoretical model, which describes 
how individuals could be thought of as behaving when determining the quanti- 
ties that they purchase and sell. This model shows that the quantities ‘de- 
manded’ or ‘supplied’ by the individuals in question cannot be expected to 
correspond to those that would be ‘demanded’ or ‘supplied’ by the standard 
individual in a competitive market. Instead we develop a more appropriate 
theoretical notion, that of ‘strategic demand and supply’. 

Using this, it is clear that the appropriate equilibrium concept can be defined 
and corresponds to a nondegenerate price distribution (see Diamond, 1987; 
Butters, 1977). For the use of our model to be justified and if we are to be able to 
use data from the whole period that we study, it should be the case that the 
observed price distributions remain fairly constant over time. If this is the case, 
then one can think of the market as repeating itself from day to day, or at 
least from week to week. We test for the intertemporal stability of the price 

’ This idea has been developed recently by Gode and Sunder (1993). 
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distributions for some representative types of fish. In particular, it should be 
noted that we do this without imposing any a priori restrictions on the form of 
the distributions. Then, having established that these do indeed remain 
constant, we use nonparametric methods to fit two different aggregate 
price-quantity relations and find that these relations, in contrast to those at the 
individual level, exhibit monotonicity once a certain class of observations is 
identified and removed. 

Since we are arguing that Walrasian demand is not the appropriate concept in 
our context, nor, indeed in many of the contexts in which it is used, it is worth 
looking at the way in which, historically, it has come to occupy such a central 
role in empirical studies. This is of particular interest since the market for fish, 
which we examine here, has been frequently used as an example. 

In the nineteenth century there was a very active debate over the nature of 
demand and little concern about its estimation. An extensive debate took place 
between John Stuart Mill (1869,1871,1972) and Thornton (1869,187O) over the 
meaning and nature of the equilibrium price in the fish market, and the 
interpretation that could be given to demand in such a market. More precisely, 
the particular structure considered in the examples they discussed, was that of 
an auction, and there was a suggestion that either the standard continuity 
property of demand was violated in the examples given or that transactions 
reflected disequilibrium behaviour.2 Until Marshall, there was considerable 
discussion as to the correct definition of demand for a single commodity. 
However, in the more formal literature there was convergence on the rather 
abstract Walrasian notion that demand simply represented the quantity that an 
individual would purchase at given prices which he was unable to influence. The 
subsequent theoretical literature concentrated largely on the extension of the 
analysis to interdependent markets and the problem of demand systems rather 
than single demand equations still maintaining the abstract Walrasian ap- 
proach. Until recently, the idea that demand should be treated in this way has 
not really been challenged, neither in the economic nor in the econometric 
literature. 

Once the twentieth century literature had converged on this precise theoret- 
ical definition, econometricians concentrated on more sophisticated techniques 
for the estimation and identification of demand systems. The agreed definition, 
that of competitive demand, concerning the quantities of goods an individual 
would buy at given prices, were he only constrained by his income, was retained. 
In Working’s (1927) paper the conceptual nature of demand and supply are not 
questioned. The only real problem for him was that of which of the two was 

‘This debate produced echoes recently, when Negishi (1985,1986,1989) (and Ekelund and Thom- 

meson, 1989) discussed the precise nature of the difficulties involved in the Mill and Thornton 

examples. 
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fluctuating over time. However for many markets, and this is the subject of this 
paper, this conceptual framework is not satisfactory. For example, in our 
particular case, the wholesale fish market in Marseille, all transactions are 
bilateral and no prices are posted. When we look at the relation between the 
prices charged and the quantities purchased on this sort of market, a number of 
questions which were very present in the earlier debate as to the appropriate 
notion of ‘demand recur. 

Let us, therefore, return to the implicit assumptions underlying the usual 
empirical analysis based on Walrasian demand theory and see whether they are 
appropriate in our context. 

The first question that arises is whether the purchaser of a good is, in fact, the 
final consumer. If this is not the case, then one would have to show that 
properties of individual demand carry over to properties of quantities purchased 
by an intermediary at different prices. If one considers the simple case of 
a purchaser who is a retailer and has a monopoly locally of the product that he 
buys and resells, then it is easy to construct examples in which this will not be 
the case. This question was raised by Working (1927) and mentioned again in 
the classical studies by Schultz (1938), who although using individual properties 
of demand made his estimations using data for farm prices and not shop prices. 
More recently, in a specific study of the Belgian fish market, Barten and 
Bettendorf (1989) refer to this question. 

The second problem arises even if one accepts that the final consumers are 
present on the market in question and that it does function ‘competitively’. The 
problem is that of identification, in this case, separating out supply changes from 
demand changes. In a truly Walrasian, or Arrow-Debreu world such a distinc- 
tion could, of course, not be made, since all transactions over time represent one 
supply and one demand decision taken in some initial period. However, this 
problem is usually circumvented in the empirical literature by making an 
implicit assumption of stationarity and separability, i.e., that the market is 
somehow repeated over time, and that decisions are taken in the same way at 
each point in time. This should, of course, be tested, but does mean that one can 
talk of successive observations. However, in this case the appropriate theory is 
that referred to as temporary general equilibrium theory. The problem with this 
is that, without full knowledge of future prices, expectations have to be taken 
into account. Without unreasonable assumptions about these, short-run de- 
mand loses many of the properties of its Walrasian counterpart. It does not 
satisfy homogeneity or the Weak Axiom of Revealed Preference, for example 
(see, e.g., Grandmont, 1983). Trying to fit a demand system based on the usual 
theoretical restrictions makes little sense therefore. 

Nevertheless, if we are prepared to accept the idea that changes in the prices of 
fish do not result in a large amount of intertemporal substitution, then thinking 
of a sequence of equilibria in a market which repeats itself is more acceptable. 
This explains why, when considering particular markets, fish has been so widely 
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used as an example (e.g., by Marshall, Pareto, Hicks) since with no stocks, 
successive markets can be thought of as independent. In our case, when fitting 
our price-quantity relations we are implicitly treating price changes as resulting 
from random shocks to the supply of fish, although the amount available is, at 
least in part, a result of strategic choice. 

The next problem is that of aggregation. If we fit a demand system in the usual 
way, we are assuming that market behaviour corresponds to that of an indi- 
vidual. Examination of individual data reveals none of the properties that one 
would expect from standard individual demand. Thus, even if such properties 
are found at the aggregate level, they cannot be attributed to individual behavi- 
our. This is one side of the problem of aggregation. The other is that, even if 
individuals satisfy certain properties, it is by no means necessary that these 
properties carry over to the aggregate level (see, e.g., Sonnenschein, 1972; 
Debreu, 1974). The two taken together mean that there is no direct connection 
between micro and macro behaviour. This basic difficulty in the testing of 
aggregate models has recently been insisted upon (see Kirman, 1992; Summers, 
1991; Lewbel, 1989) when discussing representative individual macro models, 
but as Lewbel observes, this has not stopped, and is unlikely to stop, the 
profession from testing individually derived hypotheses at the aggregate level. 
Hence when we establish some empirical properties of the aggregate relation- 
ships between prices charged and quantities purchased, we suggest that these 
should be viewed as independent of standard maximising individual behaviour. 

The next point is that the organisation of the market for the product in 
question may not be competitive. In this case, it is not possible to talk of a single 
market price. If different lots of the same good are auctioned off successively, for 
example, the average price will not necessarily correspond to the price which 
would have solved the Walrasian problem for that market. The problem here is 
that techniques for the econometric analysis of data arising from differently 
organized markets such as auctions, for example, have been little developed and 
there is always a temptation to return to standard and sophisticated techniques, 
even if these should not really be applied to the type of market in question. 
Barten and Bettendorf (1989) are well aware of this difficulty, and suggest 
that the aggregate behaviour in the fish market can be reduced to that of 
a Walrasian mechanism by looking at an inverse demand system. They reason 
as follows: 

‘Price taking producers and price taking consumers are linked by traders 
who select a price which they expect clears the market. In practice, this 
means that at the auction the wholesale traders offer prices for the fixed 
quantities which, after being augmented with a suitable margin, are suitably 
low to induce consumers to buy the available quantities. The traders set the 
prices as a function of the quantities. The causality goes from quantity to 
price.’ 
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Although the authors are only making explicit what is commonly done, it is 
clear that one should prove that, even if the auction price is well defined, it is 
indeed related to prices charged to consumers through a simple mark-up. 
Necessarily, if different purchasers pay different prices and the mark-up prin- 
ciple does apply, then a distribution of prices will be observed on the retail 
market. 

This bring us to a further point. Since our market does not function as 
a standard auction, and individual traders strike bargains amongst themselves 
and are well aware of each others’ identities, different prices can be, and are, 
charged to different purchasers for the same product. This discrimination is an 
important feature of the market, and there are significant variations in the 
average prices paid by different buyers (see Kirman and McCarthy, 1990). This 
means that reducing prices to averages may well lose a significant feature of the 
data. Furthermore, it means that the average price cannot be regarded as 
a reasonable sufficient statistic and that other properties of the price distribution 
must be taken into account. This reduces the plausibility of the argument 
advanced by Barten and Bettendorf. 

Lastly we emphasise that, when fitting the price-quantity relations, we use 
nonparametric estimation techniques, since these are less likely to lead to 
mistakenly accepting a monotone relation, and furthermore reveal interesting 
features of the data that standard techniques, using predefined functional forms, 
would have been unlikely to detect. 

Now we turn to the development of our forma1 mode1 of the market. 

2. A simple strategic model 

As we have already suggested and as has been emphasised by many authors, 
the structure and organisation of the market are of particular importance in 
determining the nature of the equilibrium realised. We therefore give a simple 
mode1 of our type of market, restricting ourselves, for simplicity, to the case of 
one type of fish. 

We thus consider the market for one perishable product with m sellers and 
in buyers.3 The market evolves in a fixed number T of rounds. Each seller i has 
strategies which at each round t specify a vector xii E RF of the prices which he 
will charge to each of the buyers. A strategy for each buyer j specifies at each 
round t a demand function 4jt(P): R, * R, . In both cases the choice of the 
prices set and the demand functions will depend on two things: firstly, the 
strategies of the other players and, secondly, on who has met whom in the 

‘In Kirman and Vignes (1991) we considered a continuum of buyers and sellers, but this was to 

facilitate the solution of the technical problem of establishing the continuity of strategies. 
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market. The model is then completed by specifying a matching process which, in 
keeping with the literature, will be assumed to be random. Thus a matching at 
time t, a realisation of the random variable, will be a mapping g from the integers 
J = (1, .‘. ,n> to the integers I = {l, . . . , m>. A probability distribution must 
then be specified over the outcomes of the matching process for every time t. 
One might think, as an example, of each buyer as choosing a seller with uniform 
probability l/m, independently at each time t. However, many other matching 
processes could be considered, including those in which some particular buyers 
and sellers are always matched together. A best strategy for a buyer i then will 
consist for each realisation of the matching process and for the associated price 
vectors of each seller i and demand functions of the other buyers h # C of 
a demand function for each period t. Similarly, for a seller it will consist of 
specifying the best price vectors for each matching and each period. 

Thus to sum up, the model consists of: 

(1) A basic strategy set B for buyers which is a subset of the product space of 
Q where Q is the set of functions q: R, -3 R+ satisfying 
(if every q is continuous and monotone decreasing, 
(ii) there exists a p > 0 such that for every q in Q, q(p) = 0 for all p > jK 
Thus B c nr Q, i.e., Q x Q x . . . x Q. Furthermore, we assume B is compact 
and convex. 

(2) A basic strategy set S for sellers which is a compact convex subset of R”:‘. 
(3) A matching process M, i.e., 

(i) the mappingsf= (fl,fi, . . . ,.f,) whereA: Z+J, 
(ii) a probability distribution over the finite set F ofj 

(4) Afill strategy q for a buyer then associates with eachfan element of Q, i.e., q: 
F -+ B, and S for a seller associates with each element of F, an element of S, 
i.e., s: F -+ S. The set of full strategies for buyers is denoted Q and for sellers 3. 

(5) There is a c5~tin~~us payof ~~n~t~~~ for each player i. Ifi(ql . . . qn, 
$I+1 ... .s,+,), i = 1, f.. ,n + m. 

(6) The responsefunction r for each player is given for buyers by I? Q” x !?’ -+ & 
where Ti =max,ni(ql . . . qi_r,q,qi.+.r . . . qn,sn+I,sn+m)andforsellers by 
r: Q”xP”-+3 where rj=maxsni(q, . . . q,,,S”+l . . . sj_r,s,sj+r . . . s,+,). 

Weassumethatforeveryi,i=l,..., n,andj,j=n+t, . . . . n+m,J’<is 
continuous. 

Denoting by Q” the n product of 0 and by 3m the m product of 9, then each 
r (r, . . . I’,,,) defines a mapping from Q” x s”“’ into itself. Given our assump- 
tions, a standard fixed point argument can be used to show the existence of an 
equilibrium. 

The market can be envisaged as follows: 

Period 0: Initial stocks become available. 
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Period 1: Sellers specify prices, buyers specify demands. Matching takes place. 
Transactions occur. 

Period 2: Given their information about what happened in period 1, sellers 
respecify prices, buyers respecify demands. Matching occurs. Ex- 

changes follow. 
Period T: Last specifications by sellers and buyers, last matching and ex- 

changes. 

As it stands, we have done no more than give a formal framework which 
enables us to define the concept of an equilibrium. To characterise precisely the 

nature of an equilibrium requires that the Ti be derived from maximising 
behaviour. For example, Ti for a buyer would maximise his expected utility at 
each round t given the known strategies of the other players and the matching 
up until t. The real difficulty here is proving the continuity of Ti for the players. 
This difficulty is illustrated by Kormendi (1979) and Benabou (1988). 

Whether or not we give a complete specification of the maximising behaviour 
of the individuals, our model would allow for extensive price dispersion (parti- 
cularly since we have assumed that price discrimination is possible as each seller 
knows the buyers’ characteristics), there will be no necessary tendency for prices 
to decline during the day as is commonly supposed and, as we have mentioned, 
there is no a priori reason to assume that individual buyers will or will not 

search. 

One important point to emphasise is that any strategy must be such that if the 
information set up to time r is the same in two realisations, the next component 
of the strategy at time t + 1 should be the same. Thus it is important to specify 
what is known at each time. If, for instance, the individuals know only their own 
initial stocks and only observe their own transaction outcomes, they will be 

much more limited than if they observe everything that has occurred. Further- 
more, it may well be the case that individuals actually choose to condition 
strategies on a limited part of the information they have available. 

Although it is difficult to prove the continuity of strategies in a fully optimis- 
ing context, it is possible that agents develop simple rules which are continuous. 

An interesting problem is how such rules are developed. 
Having given an outline of the structure of the sort of process we examine, it is 

not surprising that the outcomes do not necessarily satisfy standard demand 
properties at the individual level, since observed transactions are the results of 
the interaction between buyers’ and sellers’ strategies. We shall refer to the 
observed purchases as reflecting ‘strategic demand’ since they reflect the out- 
come of the process which clears the market at the end of the day. The difference 
from day to day on the market is the amount of fish available. This is due in part 
to exogenous factors such as weather, but is also due to the choice of sellers 
when anticipating demand changes. This latter factor should be incorporated 
into a complete model. 
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Table I 
Characteristics of the data for the Marseille fish market 

Period 
Organization 
Number of buyers 
Number of sellers 
Number of types of fish 
Level of disaggregation 
Data for each transaction 

Time 

Salient features of the market 

July-September 1988 
Pairwise trading, no posted prices 
574 
37 

129 
Every transaction recorded 

a) Name of seller 
b) Name of buyer 
c) Type of fish 
d) Quantity sold (weight) 
e) Price per kilo 

Transactions listed in chronological order during 
the day for each seller 

Concentration 

Sellers 

Buyers 

Diversity 

Fish types selected 

One seller accounts for 15.5% of all transactions; 
the six biggest sellers account for 50% of all 
transactions 

One buyer accounts for 14% of all transactions; 
all others account for less than 1% 

Average number of fish types traded by a seller 
during a day varies from 1 to 32; 50% of traders 
trade in less than 10 fish types 

Sole, sardine, whiting, and trout 

In Table 1 a description of the data set and some of its characteristics are 
given, and we now turn to an analysis of some of its features. 

3. Price-quantity relations 

What we have learned from our theoretical analysis is that there is no a priori 
reason to expect any particular structure of the relationship between prices (or 
average prices) and quantities sold. Testing standard properties to verify the 
theory underlying demand functions or demand systems would make little sense 
in this context for the reasons we have indicated. What we are observing does 
not reflect consumer demand, discriminatory pricing is taking place and prices 
evolve strategically over the day. 

However, determining whether or not our data do satisfy certain properties is 
of interest. The one feature that we do observe is that over the day markets do 
more or less clear in the sense that the surplus left unsold never exceeds 4%. 
Since sellers become aware, from the reactions of buyers to their offers, of the 
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amount available on the market and vice versa, it would not be unreasonable to 
expect average strategic equilibrium prices to be lower on those days where the 
quantity is higher, but some buyers transact early, before such information 
becomes available, and others only make one transaction for a given fish on 
a given day. Thus to deduce such a property formally would require much 
stronger assumptions than we have made. If we can establish such a property, 
i.e., of ‘downward-sloping demand’, it certainly could not be attributed to the 
normal utility-maximising model as is frequently done, but is rather a property 
that emerges from a rather complicated noncooperative game. 

To look at this we now proceed to an empirical examination of the behaviour 
of the market. We might like to find out whether, for example, when we consider 
the four fish that we have taken as examples, the quantities purchased at each 
price D(p) for those fish display the monotonicity property, i.e., for p # p’ and 
p > 0, p’ > 0, p in R4,. 

Such a property, when D(p) is interpreted as a standard demand system, is 
described as the ‘Law of Demand’ by Hildenbrand (1983) following Hicks. In 
particular, it implies that each partial ‘own demand curve’ for the fish is 
downward-sloping.4 One approach would be to estimate in a standard param- 
etric way the whole ‘demand system’, but since we have no a priori reason to 
impose any sort of functional form on the system, we have chosen to look at the 
weaker property, negatively sloped price quantity relations for each individual 
fish. In doing so we are open to the criticism that we are not taking into account 
substitution effects between fish. Thus, it could be argued that what we gain in 
using more flexible estimation methods is offset by what we lose in overlooking 
these effects. There are three responses to this. Firstly, many buyers such as 
restaurant owners have a pre-determined vector of fish quantities which they do 
not vary much in response to relative price changes. Secondly, there are other 
buyers who only buy one type of fish and therefore do not substitute. Lastly, 
some of the exogenous factors influencing the amount of fish available, such as 
weather, are common to many fish, thus limiting the amount of substitution 
possible. For all of these reasons we have analysed each of our four fish 
separately. 

In undertaking our analysis of the ‘demand’ for each fish, we do an exercise 
designed to elicit some of the basic characteristics of the data. Basically, we take 
the data for a given fish and aggregate it by taking the quantity of that fish sold 
on a particular day and the weighted average price for that day. There is 

40f course to take observed quantities purchased as representing a marginal curve is not correct 
since the ceteris paribus condition is violated. However, this makes the resultant monotonicity more 
rather than less convincing. 
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a problem of separation of strategies here. There are not only variations in the 
supply of fish due to weather, etc., but more fish is landed on active market days 
by choice. The variations over the week are due in part to obvious institutional 
factors (fish-shops are closed on Sundays), but also to more indirect ones. As 
Robbins (1935) observed before his discussion of the market for herring in 
England: 

‘The influence of the Reformation made no change in the forces of gravity. 
But it certainly must have changed the demand for fish on Fridays.’ 

We then fit the resulting data by nonparametric smoothing methods. Sufficient 
details to give a basic understanding of the techniques used are given in 
Appendix A (for a full account see Hardle, 1990). We use nonparametric 
methods since they enable us to pick up any lack of monotonicity of the fitted 
curve over some particular price range. Nevertheless in all four cases the fitted 
curves are indeed monotone decreasing and two examples are given in Figs. la 
and lb. 

Simple inspection of the graphs is, of course, not sufficient, and since we have 
no explicit functional form for the fitted curves, we have actually to show that 

sardines 
I 1 I 1 I 

0 

0 
d I I I , I 

4.0 6.0 E.0 10.0 12.0 
price (X102) 

Fig. la 
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li.0 d.0 ii.0 2d.o 2i.o 
price (centines) (xi02) 

2i.o 

Fig. lb 

they are monotonic. This is easily done since we can check successive differences 
in the y values for each of the x values corresponding to the grid imposed by the 
original observations. If the maximum of these is negative, then it can easily be 
shown that the continuous fitted curve is monotone decreasing. This was the 
case for all of our curves. As explained in Appendix A, the local smoothing 
procedure used is ‘optimal’, and this monotonicity property is not vulnerable to 
changes about the optimum. Although we have established the monotonicity of 
the fitted relation, what we are really interested in is the monotonicity of the 
‘true’ relation. This requires establishing an upper confidence band on the 
deriuatiue of the function and showing that this is negative. In our case, it is 
enough to establish that the upper confidence bound on the maximum of the 
derivative is negative. However, since no theoretical results are available for this, 
we had to make this calculation at each discrete point on the x axis correspond- 
ing to one of the bin means. In every case the negativity property was satisfied. 
In the light of this evidence, that the monotonicity property is apparently robust, 
an economist might naively have suggested that these curves represented ag- 
gregate demand for the fish in question and that their monotonicity was derived 
from the underlying classical individual demands. 

The important thing to re-emphasise here is that the ‘nice’ monotonicity 
property of the aggregate price quantity curves does not reflect and is not derived 
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sardines 224 buyer 1652 

mice 

Fig. 2a 

from the corresponding characteristics of individual behaviour. Nor indeed, 
given our discussion, should we expect it to be. 

Transactions at the individual level 

To illustrate the lack of ‘good behaviour’ at the micro level, it is therefore 
worth looking at the plots for the quantities of sardines purchased at different 
prices by three individuals. These are illustrated in Figs. 2a, 2b, and 2~. The 
observed price-quantity pairs of the first two buyers are far from corresponding 
to what classical demand theory might lead us to expect, whereas the third 
might conceivably meet those conditions. The sardine was chosen to illustrate 
this, not because it has any particular significance but since the price-quality 
relations for all four fish are, as we have seen, well-shaved on the aggregate 
level. Once again it is important to recall the nature and organization of the 
transactions on this market, both over the day and as it varies between matching 
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sardines 224 buyer 3029 

J 
2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.16 

price 

Fig. 2b 

of different buyers and sellers, to understand the apparent eccentricity of the 
individual demands. 

4. Stability of price distributions 

If, after this initial examination of the data, we are to consider deriving 
something corresponding to short-term ‘strategic demand’ from observations 
over time in our particular market, then we have to be sure that market 
conditions remained essentially the same over the whole period. Since, as we 
have already observed, we would not expect an equilibrium price, but rather an 
equilib~um price distribution for the game that we have described, we should 
therefore check that the distributions observed in successive periods remain the 
same. To do this we test the hypothesis that for each individual fish the daily 
observed price distribution is stable over time. It is important to understand 
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sardines 224 buyer 266% 
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* i I I I I 
* 

s 
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what we mean here by dist~bution. We count the total number of kilos 
transacted in each price interval. The alternative would be to count the number 
of transactions at each price level, but, in effect, we consider each kilo as 
a separate transaction. This distinction is usually avoided in the iiterature on 
price dispersion where individuals demand one unit of an invisible good (see 
Rothschild, 1973, and Diamond, 1987, for example}. Thus the distribution h of 
prices is given by 

hCPj) = 

1 quantities sold at prices in the jth interval 

Total quantities sold 

We proceed by fitting a function to each of the distributions and then seeing by 
how much the distance of each of these functions from the others varies. In 
Figs. 3a and 3b the results for the three months for sardines on a general and on 
a focused scale are shown. Fig. 3c shows the same analysis of trout on a focused 
scale. 
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Full details of the tests for the stability of the distribution are given in 
Appendix B. We could not reject the hypothesis that the distributions were 
constant over time. That is, when we considered the following hypotheses: 

H,: 5 =fj, i #j, 

HI: h+zfj, i #j, 

for each of our four fish over the three months in question, in none of the cases 
could we reject Ho. 

Since the numerical values of the confidence bounds constitute curves we have 
not reproduced the graphs here, but similar illustrations may be found in Hardle 
(1990). However, the relative stability of the smoothed fits over the three months 
in question can be seen in Figs. 3a to 3c5 The importance of the discretisation 

5 In each case, July is given by the solid line, August by the dashed line, and September by the dotted 

line. 
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parameter d is seen by comparing the two figures for sardines, Figs. 3a and 3b. 
The smoothing parameter is h. 

As our statistical analysis shows, once we accept the idea that we are dealing 
with a distribution of prices which reflects the equilibrium strategies of the 
different players, we cannot reject the hypothesis that these d~st~but~ons are 
stable over time. 

An important point which merits further discussion is to what extent is it 
legitimate to use stability tests developed for ~ndependentIy drawn observations 
on the sort of data we examine here? Two remarks can be made. Firstly, it is by 
no means infrequent to apply a stochastic model to data which is not derived 
from such a model. Stochastic models of deterministic processes are often very 
useful. (See Erdiis and Spencer, 1974, for example.) 

Thus, even if buyers met sellers in a predetermined way, without the appropri- 
ate information the modeller may well have to treat the data as if generated by 
some stochastic matching process. 
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In fact, there is a certain amount of stochastic behaviour in the market in 
that searching for low prices does take place. The problem is that, although 
the evidence from the fitted densities seems to be clear, for the statistical tests 
for stability to be valid, the observations should be independently identi- 
cally distributed. This cannot be strictly true, since certain buyers pay 
higher prices for example. Although these buyers are probabiy of particular 
types, restaurants, etc., they are only identified by code. We therefore 
do not have prior information on which to condition and cannot treat them as 
different.6 

6 In treating our observations as drawn from the same population in this way we are following Theil 
(1971), for example, who in his ‘convergence’ approach thought of N consumers as independent 
elements of an infinite consumer population and the parameters of their utility functions as 
identically distributed. 
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5. Price-quantity relations: A second analysis 

When we estimated our smoothed ‘demand’ curves in the previous section we 
did so by averaging prices. However, this loses a lot of the information 
contained in our data. We might therefore ask a simpler question for which 
generally data are not available. Are more kilos of fish transacted at lower 
prices? By this we mean taking as one observation the total quantity transacted 
over the whole period at a specific price. Fitting these observations with 
a smoothed curve corresponds to finding the best fit for the average quantity 
sold for prices in some appropriately chosen price interval. 

We thus obtained smoothed curves by summing over quantities at each given 
price and by ‘binning’ data in price intervals. The results are shown in Figs. 4a to 
4c. Aggregation over transactions produces nicely behaved, that is, essentially 
monotone demand curves for three out of the four fish. Sardines are illustrated 
in Figs. 4a and 4b. Whiting in Fig. 4c, however, displays a monotone increasing 

sardines dota 

3.50 3.85 4.20 

quantity , ff Blocks= 2 hopt= 0.34 

Fig. 4a 
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Fig. 4b 

characteristic over higher prices. The reason for this is the cluster of points near 
the origin. One explanation that could be advanced for this is the existence of 
many transactions at low prices corresponding to the clearing of stocks at the 
end of the day. To check for this we isolated data for late transactions, and as 
Table 2 indicates, we found examples in which the prices of late transactions 
fall sharply. 

This result must be treated with some caution since we also find examples 
where prices fall, only to rise again at the end of the day - a situation 
corresponding to that when a buyer with inelastic demand wished to add to his 
purchases before the end of the market. 

Nevertheless the important thing to realise here is that the use of nonparam- 
etric methods enabled us to identify this particular feature, Trying various 
nonlinear but parametric forms gave excellent fits with monotone decreasing 
functions. Thus we would not have detected the presence of this group of ‘less 
well-behaved’ observations. Once the offending observations were removed we 
obtained a monotone decreasing nonparametric curve. 
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Table 2 
Late transactions, in chrono~ogicai order (price dropped if transaction is in last 10% of those made 
by seller in the day) 

Date 

87/07/~ 

Normal prices 

Dropped price 

87/07/08 

Normal prices 

Dropped price 

Seller no. 

40 

2x 

Price Quantity 

82 60 
85 40 
75 100 
75 50 
85 60 
75 50 
85 60 
85 70 

25 85 

82 50 
82 20 

20 64 
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Fig. 5a 

Finally we look at all fish with quantities added as if they were one commod- 
ity, and the data and resultant curves are shown in Figs. 5a and 5b. Although, of 
course, this simple addition is extremely primitive as a procedure, the resultant 
smoothed demand curves are monotone. Weighting the quantities more appro- 
priately would not have modified this. Thus aggregating, even in an arbitrary 
way, reinforces a characteristic which is weaker at a less aggregated level 
and even absent for many observations at the micro level. The market 
is, therefore, ‘well-behaved’, even though many of the individuals participating 
in it are not. 

6. Conclusion 

In this paper we have examined detailed data from the fish market for 
Marseille. We built a theoretical model for the behaviour in this market. The 
perishable nature of the product enables us to think of successive markets as 



all fish 

quantity , # Blocks= 2 hopt= 3.01 x 105 

Fig. 5b 

being separated and to analyse the short-run behaviour of the relation between 
prices and quantities in such a market. Although it is tempting to look at these 
data as resulting from the interaction between competitive supply and demand, 
the organization of the market and the identity of the participants makes this 
unreasonable. Individual transactions show none of the characteristics that 
standard demand analysis would lead one to expect. Fitting seasonalised aver- 
age price over a day to quantities sold on that day did at the uggregu~e IeveE give 
rise to a monotone decreasing relation. Thus, this property does not reflect 
individual behaviour but rather results from aggregation. The use of non- 
parametric methods makes this finding particularly striking. 

We then turned to looking at the data in the light of our models. The price 
distributions, the appropriate equilibrium notion were stable over time, allow- 
ing us to think of the market game as being repeated over time. We then 
analysed no~parametrically the transactions at each price and were able to 
identify a particular feature of the data, many small transactions at low prices at 
the end of trading which destroyed the monotone character of the relation for 
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one fish. However, once this problem was identified, trading for the earlier part 
of the day did have a monotone price-quantity relation. 

Although this analysis now needs to be generalised to all types of fish over 
longer periods, two aspects are important. Firstly, the underlying behaviour 
should not just be taken to reflect a standard competitive market. Doing so may 
lead to false inferences on the aggregate level about individual behaviour. 
Aggregate phenomena in this sort of market are not simply the magnified 
reflection of micro phenomena. Testing aggregate data for properties derived 
from the theory of individual behaviour is not an appropriate procedure. 
Secondly, once this is taken into account, it is interesting to observe that using 
nonparametric methods to fit a different price-quantity relation did allow us to 
identify features of the special behavioural structure of this market, at the micro 
level. 

Appendix A 

A. 1. The local smoothing method 

Our smoothing method assumes that the response variables (Yijfz r are of the 
form: 

Yi = m(Xi) + Ei, i=l y .*. > IT, 

with explanatory variables Xi, independent errors (.sJ~=r, and the smooth 
regression function m(x). We are interested in estimating the function pn. The 
kernel smoother is defined by 

e,,(x) = n-l igl Kh(X - xi) Yt/f’ i$, Kh(X - xi)T (A-1) 

where Kh( .) = h-‘K(. /h) is the resealed kernel function X with bandwidth h. 
Behaviour of this smoother is crucially dependent on the choice of h. A simple 
and useful quantification of the influence of h is the analysis of the asymptotic 
mean integrated squared error. The variance of the kernel smoother 6,,(x) is 
approximated by 

@“(X) 
n -‘h-‘&‘(x) = n-‘h-‘JK2(u)du--- 

f(x) ’ 
(A.21 

where a*(x) denotes the variance function E(Y *lx) - m’(x) and f(x) is the 
marginal density of the X variables. The bias is approximated by 

h*B(x) = ; ju’K(u) 
m’c4f’W 

m”(x) + 2 f(x) . (A-3) 
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This indicates that the best bandwidth at each location x is well represented by 

h,(x) = n - 1;s 
V(x) 1:5 

[ 1 
- 
4B2(x) 

A good global bandwidth, i.e., one suitable in an average sense, is given 

This bandwidth is obtained by minimising the approximate integrated 
squared error, n -‘h- ‘JV(x)dx + h4JB2(x)dx. 

A.2. A global smoothing parameter 

by 

(A.4) 

mean 

Practical use of the above representation for hl in formula (A.4) requires 
estimates of J V(x) and J B2(x), which in turn can be built up, using formulas 
(A.2) and (A.3), from estimates of m(x) andf(x). We shall use simple estimates 
like histograms for this. 

Histograms are constructed by first partitioning the design interval [a, h] into 
blocks Bj, j= 1, . . . , N. For simplicity, we work explicitly here with equal 
length intervals 

Bj= U+ 
[ 

ci- l)(b-a),a+j(b-a) 

N 1 N ’ 
Let B denote a generic block Bj, and r and I denote right and left boundaries of 
this block. The proportion of Xi falling in each interval reflects the height of the 
density near the centre of the block (bin). Let c = (r + 1)/2 denote the block 
centre and r,, = (r - 1)!2 denote the block radius. The histogram density esti- 
mate is 

(A.3 

To estimate the derivative of j’ on B we use a simple differencing method. 
Define 

n, = i !(I d Xi < C), n,= i I(c<X,<r). 
i=l i= I 

If these frequency estimates are combined we obtain the score function estimate 

(fir)@) = 2(n, - nlkbh f nl). (A.61 

The estimation of V(x) in (A.4) is constructed from a sum of squared residuals 
(RSS) about an estimate G(x) of m(x), normalised by an estimate of 1: In 
particular, in the generic block B define RSS = xxlEB(Yi - $I(X,))~. An 
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estimate of (a2/f) is then given by 

which leads to 

P(c) = 3 (i%,k,, (A.7) 

for the quartic kernel, 

K(u) =+&I - @f(]Uj G l), 

which we used throughout. 
For estimation of ni, M” we use blockwise parabolic fitting. As an estimate of 

k’ = S V(x), we obtain 

P = 2rh P(Cj), f‘4.8) 

j= 1 

using notation from (A.7) and the quartic kernel given before. The bias B(cj) for 
the quartic kernel in each block B is estimated via 

B(cj) = I!! 3 2B13j + 2C2P3j(Cj) + P2jl (~/~)(~j), (A.9) 

where 82j and fiaj are least squares estimates in the model 

Blj + B2jx + P3jx2 (A.lO) 

over block fij. The final estimate of B2 = J B’(x)dx is obtained by summing up 
the squares of these quantities, 

fi* = i ZrbB’(cj). (A.ll) 
j= 1 

This leads finally to 

hI = n- ‘is [p/4&,] ris_ 

A.3. Blocks for a local smoothing parameter finction 

The estimates of variance and squared bias over each block provide an easy 
bandwidth choice for each block, given by 

&(c) = n - IiS [ ~(c~/4~2(c)] r/3, (A.12) 

using the notation from (A.7) and (A.lO). The logs (base 2) of these values are the 
heights of the dotted step function in the upper left inset of Fig. 4a. The 
bandwidth 6, is represented by the dotted and dashed constant function in this 
inset bandwidth plot. This provides a useful reference for understanding the 
relative sizes of the local bandwidths. The average of the &(cj) does not give the 



W. Hiirdle, A. KirmanlJournal of Econometrics 67 (1995) 227-257 253 

global bandwidth & because the variance and bias terms need to be summed 
separately for the latter! 

The local bandwidth estimates are best in the centre of the blocks. For the 
points away from the centres we use a smooth, represented by the solid curve, of 
the step function. This smooth is computed on a fixed grid of x’s by the formula 
(A.l) with the Xi replaced by the bin centres and the Yi replaced by the height of 
the step function. The kernel used is the quartic, and the bandwidth is the block 
radius rb. This choice of bandwidth guarantees that the smooth coincides with 
the step function at the points where it is most accurate, i.e., at the bin centres. 

A.4. Diagnostic plots 

The inset plots in Fig. 4a are intended to show visually how well our methods 
are performing. For example, Fig. 4a shows in the left upper corner the fact that 
a bigger bandwidth has to be chosen for larger quantities. 

The raw data plot in the lower right was also a useful diagnostic in the choice 
of N = 2 blocks for the sardine data example presented in Fig. 4a. Our initial 
choice of N = 5 blocks gave visually poor performance because too many 
‘corners’ appeared, as can be seen in Fig. 4b. This gave a visually poor parabolic 
fit, which resulted in an oversmoothed global choice t;i and a less effective local 
bandwidth function G,(x). 

The bandwidth plots enhance the understanding of the performance of the 
local smoothing method by showing the amount of smoothing done at each 
point. The effective bandwidth is shown on the log scale, because this parameter 
is multiplicative in character. 

A further diagnostic device, which we find useful, is to calculate the observed 
significance level of the parabolic fit on each block. The numbers shown in the 
top part of the bandwidth plot are p-values for testing, within each block, the 
null hypothesis of linearity, 

Ho: P3.j = 0, 

in the local parabolic model. When these are small, there is strong evidence of 
curvature in the data, so our local bandwidth estimate should be reliable. Note 
that in most of our examples the local method works well in many cases, even 
when the p-value is large. 

Appendix B 

Stability of price distributions 

Recall that the distribution of prices is given by 

f(P) = 
c quantities sold at prices in the jth interval 

Total quantities sold 
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Let us denote the pairs (Xi, Yi}i= 1 as observations of Xi = price of the transac- 
tions and Yi = quantity of ith transactions. We shall assume that the data 
{Xi, Yi)i= 1 are independent and identically distributed observations. 

This can be justified in several ways. Firstly, not all players are present all the 
time (randomness). Second, buyers do not stick to ‘their’ seller (independence) 
and buy different quantities on different occasions (identical distribution). Third, 
sellers do not stick to ‘their’ prices, as empirical analysis of late transactions 
shows. We are aware of the fact that this is an important assumption, but 
nevertheless pose it in order to be able to analyse the stability of the distribution. 

The price distribution at p = x can be re-written as 

nlh’!i$I yiz(lX-xiI bh)/neli$l Yis 

when we have essentially resealed by 2h, the length of the interval over which we 
are computing the price distribution. This information is essentially a kernel 
estimator. 

4(X)/j = n-l f: K,(X - Xi) Yi/jj 
i=l 

for kernel K(u) = 3 I( 1 u 1 < l), K,,(e) = h-‘K(*/h). 
A kernel is a symmetric probability density. Examples are 

K(u) = $(l - L42)Z( (u 1 < 1) Epanechenkov, 

K(u) = E(l - u2)Z( I u I d 1) Quartic, 

K(u) = (l/,/%) exp( - u2/2) Gaussian. 

The parameter h controlling the ‘window’ over which we are averaging is called 
bandwidth (see Hardle, 1990, Ch. 3). What is P,,(x) estimating? Denote by 
m(x) = E(y I Y = x) and (in contrast to earlier notation)f(x) the density of the 
prices of all transactions. 

Thus, following well-known arguments of Hardle (1990) 

E?,,(X) = J KL(x - u)m(u)f(u) du 

= m(x)f(x) + ; J u2K(u)du (mf)“(x) + o(h2) as h -0. 

The bias is thus of order 0(h2). The variance of P,,(x) is given by 

var[r*,(x)] = n- lvar[&(x - X) Y] 

=n -‘h-‘E(Y21X = x)f(x)JK’(u)du + O(n-‘h-l) 

as nh -+ co. 

Hence the mean squared error can be written with constraints Cl and C2 as 

MSE(x) = u -‘h-‘C, + h4C4. 
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The optimum for h is reached when h m n- ‘15, yielding a spread of 
MSE(x) w nm415. Therefore positive intervals have length (and ‘shrinking rate’) 
n - ‘j5. More precisely 

> 
_“, N (0, M~(x).f(x) 1 K2), 

for nh5 + 0, p = E(Y), r = mf: 
Of course, pointwise confirmation intervals do not help us in testing the 

stability of the price distribution, we need uniform confirmation bounds. They 
can be developed as follows. With 

Fh(x) - r(x) = jj Z&(x - n)od(F, - F)(n, u), 

when F, diverts the empirical distribution function of the data {(Xi, Yi)}~= 1 and 
F their theoretical distribution. Suppose the data has been resealed so that 

X E [0, 11. The process &(F, - F) can be approximated by Brownian bridges, 
so that asymptotically as the number of transactions becomes very large, 

J&F,,(x) - r(x)) z [M2(~)f(~)]1’2 h- 1’2 SK 7 dW(u), 
( ) 

for a Wiener process W and Mz(x): E(Y 2 1 X = x). 
The desired uniform confidence bound can be constructed from the following 

statement: 

P ((26 log n)l” [(uh/jK2)“’ su~(fi2~4.&4-"~l - 41 < ~1 
+exp(-Zexp(-z)) as u--, cc. 

Here, 

d, = (26 log n)li2 + (l/26 logn)“’ {log(C,/2n)}, 

h=nm6, S>:, 

C3 = j[K’(u)]’ du/2j[K(u)12 dii. 

For an algorithm for these confidence bounds see Hlrdle (1990). 

References 

Barten, A.P. and L.J. Bettendorf, 1989, Price formation of fish: An application of an inverse demand 

system, European Economic Review 33, 1509- 1525. 

Becker, G.S., 1962, Irrational behavior and economic theory, Journal of Political Economy 70, 

l-13. 

Benabou, R., 1988, Search, price setting and inflation, Review of Economic Studies 55, 353-376. 

Butters, G.R., 1977, Price distributions of sales and advertising prices, Review of Economic Studies 

44, 465-491. 



256 W. Hbrdle, A. KirmanJJournal of Econometrics 67 (1995) 227-257 

Debreu, G., 1974, Excess demand functions, Journal of Mathematical Economics 1, 15-23. 

Diamond, P., 1987, Consumer differences and prices in a search model, Quarterly Journal of 

Economics 102,4299436. 

Ekelund, R.B. Jr. and S. Thommesen, 1989, Disequilibrium theory and Thornton’s assault on the 

laws of supply and demand, History of Political Economy 21, 5677592. 

Erdos, P. and J. Spencer, 1974, Probabilistic methods in combinatorics (Academic Press, New York, 

NY). 

Gode, D.K. and S. Sunder, 1993, Allocative efficiency of markets with zero-intelligence traders: 

Markets as a partial substitute for individual rationality, Journal of Political Economy 101, 

119p 137. 

Gorman, W.M., 1959, The demand for fish: An application of factor analysis, Research paper no. 6, 

Series A (Faculty of Commerce and Social Science, University of Birmingham); Abstracted in: 

Econometrica 28, 6499650. 

Grandmont, J.-M., 1983, Money and value, Econometric Society monographs in pure theory 

(Cambridge University Press, Cambridge, and Editions de la Maison des Sciences de I’Homme, 

Paris). 

Hardle, W., 1990, Applied nonparametric regression, Econometric Society monograph series 19 

(Cambridge University Press, Cambridge). 

Hildenbrand, W., 1983, On the law of demand, Econometrica 51, 99771019. 

Kirman, A.P., 1992, What or whom does the representative individual represent?, Journal of 

Economic Perspectives 6, 117- 136. 

Kirman, A.P. and M. McCarthy, 1990, Equilibrium prices and market structure: The Marseille fish 

market, Paper presented at the 1990 congress of the Royal Economic Society. 

Kirman, A.P. and A. Vignes, 1991, Price dispersion: Theoretical considerations and empirical 

evidence from the Marseille fish market, in: K.J. Arrow, ed., Issues in contemporary economics 

(Macmillan, London). 

Kormendi, R.C., 1979, Dispersed transactions prices in a model of decentralised pure exchange, in: 

S.A. Lippman and J. McCall, eds., Studies in the economics of search (North-Holland, Amster- 

dam). 

Lewbel, A., 1989, Exact aggregation and a representative consumer, Quarterly Journal of Economics 

104, 622-633. 

Mill, J.S., 1869, Thornton on labour and its claims, in: Collected works, 1967, Essays on economics 

and society (Toronto University Press, Toronto) 631-668. 

Mill, J.S., 1871, Principles of political economy, edited by W.J. Ashley (New York, NY). 

Mill, J.S., 1972, Later letters of John Stuart Mill, 1849- 1873, in: Collected works, Vols. 14-17, 

(Toronto). 

Negishi, T., 1985, Non-Walrasian foundations of macroeconomics, in: G.R. Feiwel, ed., Issues in 

contemporary macroeconomics and distribution (London). 

Negishi, T., 1986, Thornton’s criticism of equilibrium theory and Mill, History of Political Economy 

18, 5677577. 

Negishi, T., 1989, On equilibrium and disequilibrium - A reply to Ekelund and Thommesen, History 
of Political Economy 21, 593-600. 

Phlips, L., 1988, The economics of imperfect information (Cambridge University Press, New York, 

NY). 

Robbins, L., 1935, An essay on the nature and significance of economic science (Macmillan, 

London). 

Roth, A.K., J.K. Murnighan, and F. Schoumaker, 1988, The deadline effect in bargaining: Some 

experimental evidence, American Economic Review 78, 8066823. 

Rothschild, M., 1973, Models of market organisation with imperfect information: A survey, Journal 

of Political Economy 81, 1283-1301. 



W. Htirdife, A. K~r~anl~o~r~ai of Econometrics 67 (1995) 227-257 257 

Salop, SC. and J.E. Stiglitz, 1982, The theory of sales: A simple model of equilibrium price dispersion 
with identical agents, American Economic Review 72, 1121-l 130. 

Sonnenschein, H., 1972, Market excess demand functions, Econometrica 40, 549-563. 
Summers, L.H., 1991, The scientific illusion in empirical macroeconomics, Scandinavian Journal of 

Economics 93, 129% 148. 
The& H., 1971, Principles of econometrics (Wiley, New York, NY). 
Thornton, W.H., 1870, On labour: Its wrongful claims and rightful dues, its actual present and 

possible future, 2nd ed. (London). 
Varian, H.R., 1980, A model of sales, American Economic Review 76, 65 i-659. 
Working, E.J., 1927, What do statistical ‘demand curves’ show?, Quarterly Journal of Economics, 

212-235. 


