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I. Introduction

Since the seminal article by  Merton[1974], who extend Black and  Scholes [1973] option theory  to price bond with default risk, there has been many developments in modeling the term structure of  bonds with credit risk.  Even though the contingent claims analysis has delivered many insights into the modeling of  default, however,  corporate bonds turn out to be more difficult  to price than equivalent Treasury bonds.

The  purpose  of  this paper to study the impact of  stochastic volatility on the credit spread and the term structure of  defaultable bond.  The  result outcome of  the  analysis can be useful in:

1. The calibrated  model can be used to generate  spread under  different  senario

2.  Pricing non-liquid  securities  with credit risk

3.  Evaluate  credit risk  in a portfolio

1.1.  Traditional Approach :  A Brief  Review

 Modeling  defaultable bond: The  Merton  approach:

The option pricing  model builds on the limited liability rule  that  allows shareholders  to default on their  obligations while surrending the firm’s  asset to the  various claim holders, according to  prespecified priority  rules.    In this framework, the creditor  implicitly grants  the  debtor  a  “put” option on the  underlying  asset  at  a strike  price  F, the face value of the risky  debt.   Therefore , the value of defaultable is equal to the  value of  the default-free  bond minus  the  put value  of  this ‘default option’.  However, the this traditional modeling has shown  significant  limits.  For example, the default is assumed to occur only  when the firm exhausts its assets. Although the assumption that  the  term structure of interest rates is  flat and deterministic allows  derivation  of  simple  closed –form expressions for the  price  of the defaultable bonds, it is clearly  unrealistic.  Jones, Mason and  Rosenfeld(1984) showed that the Merton(1974) model with  non-stochastic interest rate is unable to generate corporate spreads compatible with those observed in practice.  Merton’ model also posed several practical difficulties .  One  salient difficulties is that  the market value o f asset and their volatility  must be specified. Neither is typically observed, although  techniques  to infer these values from equity price exist
.  

A vast  literature has used and extended  this framework by  explicitly taking into account  those issues.  In an  important article,  for example, Black and Cox(1976) allow default to occur when the value of the firm ‘s assets reaches a lower threshold. Longstaff and Schwartz (made further extension in two ways:  First,  they  incorporate both default risk and interest rate risk; second,  their model  allow  for deviations from strict absolute priority.   
    

Given  the simplifying  nature of  the model, however, these  models   have failed  to   explain  the large credit  spreads  observed in practice; see, for  example, Jones, Mason, and Rosenfeld[1984],  Franks and  Torous[1989], and  Kim, Ramaswamy, and Sundaresan [1992]     

 In attempt to address these  issues,   the  subsequent  literature  can be categorized into  two types: The structure models and  the  reduced form.  The former  assume an  economic causality at the  firms’ level--- default  happens for a reason.  In the later model, default “pops out” according to  an underlying process ( Poisson process, for example).   In essence, these  models differ  in their  the specification of  default triggering mechanism.  

1.2. The structure models 

Taking the individual firm as the unit of  analysis, the structure  model is  the  genealogical  progeny of  the earlier  ones. They  model the dynamics of the firm’s capital structure  directly.   Default time  is determined as the first  time  the market value of  the issuer’s assets acrosses some boundary, which can be  either deterministic (e.g. Leland, 1994a)  or stochastic (e.g. Nielsen et. al. 1993). A representative  author  along  this line  is Longstaff  and  Schwartz[1995].   Following   black and  Cox(1976) Longstaff and Schwartz  assume there is a threshold value (v)  for the  firm at which finacial distress occurs. As long as  the total value (At)  is  greater than  v(t) , the firm continues to be  able to meet its contractual obligations. If   At   reaches v, however, the firm immediately enters financial distress, defaulting on all of  its obligations, and  corporate bondholders received a fraction of  the  corporate assets which  is exogenously specified  and represents the write down that is applied to the  value that  should be received by bondholders  if the strict  priority rule were enforced.  

1.3. The  reduced form models.

In  stead of directly modeling the process of  corporate asset/liability, the  reduced-form treat default as  an  unpredictable event  governed by some given hazard  rate   process.  

The process being modeled is the  “stopping time”—the  probability that a default event occurs prior to  maturity. 

In essence, the reduced  form models ignore the economics  of default, that is,  no attempt is made  to relate the likelihood of  default  to the  process  that causes a firm  to become  unable  to pay its  claims. Instead,  the approach models the times  when default occurs, assuming that default time follows a specified stochastic process.   While the reduced-form approach might appear to lose information compared with the richer asset  volatility models, its advantage is  that the parameters of the default process can be directly estimated from the prices of the  other traded ass et. In this sense, the reduced-form models  look much like  traditional no-arbitrage derivatives pricing models that fit, or are estimated from, prices of  traded assets.(See Gregory Hayt 2000).   

Among other authors using the reduced-form modes are Jarrow and  Turnbull[1995], Litterman and Iben(1998), Jarrow, lando, and Turnbull(1997), Fons(1994) and recently, Darrell Duffie and  Singleton(1999),  developed  a defaultable version of the  Heath, Jarrow and Morton (1992) (HJM) model based on the forward-rate process associated with  “default-adjusted” short rate
. In this model, the price of a defaultable  claim can be expressed as  the present value of the  promised payoff (treated as if  it were default-free) discounted by R.    

 The reduced-form models avoid  the problems  associated with unobservable  asset values and complex capital structures associated  with  structure model. However, the cost  of this simplicity  is a reliance on  credit  spread  data to estimate the  risk-neutral probability of default.  Given  (market) data-demanding  nature of  the reduced-form, the deeper the  and more liquid the market, the better the reduced-form models can be expected to work.       

1.4.  The A  Middle Ground   

The  imperfectness of  either  induce  form

Cathcart and El-Jahel (1998)  summarized the  pros and cons  of both  structural  models and  reduced-form models.   As they have argued, the structure approach  is conceptionally important, but the reduced-form models are reasonable   because 1) gathering and analyzing corporate-level data (issuer by issuer)  is  impractical to empirically study  a structural models  2) complicated balanced sheet cannot easily be captured by structural models, and 3) default can be  determined  by factors other than  assets and liabilities( for example, default  could occur for reasons of  illiquidity, or as is   sometimes the case with sovereign debt, for general economic and political considerations).

The authors presented a middle ground between structural and reduced-form model in that default occurs when some signaling process hits some lower  threshold. They claim that  “a  signaling process can capture a sample of  effects that can influence the probability of default better than a process for the value of the assets of the firm (the effect of the liquidity of asset, for example)”. It is more relevant when evaluating defaultable bonds issued by entities that do not have an identifiable collection of assets (for example, sovereign issuers and other agencies such as municipalities).        

We  believe  Cathcart and El-Jahel ‘ model provides a good  prototype which strikes a balance between   assumptive  realism and analytically tractability. Once appropriately  modified,  their two factor  model can cover a broad  class of  ‘middle ground’ models. 

Our model is a modification of  Cathcart and El-Jahel ‘s.  The new  features  include the following:

1. instead of  constant  volatility of interest rate, we assume  stochastic process of  volatility.  We  approximate this  volatility factor by d discrete time GARCH specification.
2.  we  re-specify the signaling process so that  the whole  structure of our model fit into the  standard  form of  affine model
. This specification  provides us with the following benefit :

a.  get a closed form solution from the partial differentiation.  

      b.  enable us  to apply  Kalman Filter—a very efficient  estimation method --to infer  values for  unobservable state  variables  and  estimate  parameters
.  

3.  our specification about the  short  rate process looks  similar  with C-E-J in the format,  except that we have a stochastic  deviation term.    

  4.  We take advantage of  the exiting  result  from Longstaff  whose  closed form formula for risk free  bond price  derived from  a  two factor  model is adopted  here as  the limit solution of  the  credit risky  bond.        

2.1. Stochastic volatility

Stochastic volatility models have become popular for  derivatives pricing and hedging in the past 10 years as the  existence of a non-flat implied volatility surface(or term structure) has been noticed and   become more pronounced, especially since the 1987   crash.

The well documented
 existence of  a non-flat implied volatility surface stands in empirical contradiction to the consistency in using classical  Black-Scholes(1973) approach , which assumes constant volatility.  The natural  extension pursued both  in the  literature  and in practice  has been  to modify the specification  of volatility  in the  stochastic  dynamics of the underlying  asset price model.

“There are many  reasons why we should model volatility as a random process. For example, it could simply represent estimation uncertainty, or it can arise as a friction from transaction cost, or it could simulate non-Gaussian(heavy-tailed)return distributions. In other word, stochastic volatility is a far-reaching extension of the Black-Scholes lognormal model, describing a much more complex market.” (Fouque and Papanicolaou(2000)   

“It  is  not  possible to obtain a meaningful  volatility  exposure  measure from a term structure model in which  volatility  is a deterministic  parameter , rather than a stochastic factor. Varying  the  parameter  to determine the price sensitivity  would  violate the assumptions of  the  model  that  the parameter is constant, and would  therefore invalidate its conclusions.”  (Fong and Vasicek 1995)  

The effects of stochastic volatility upon option prices  have been examed by Hull and White(1987), Johnson and Shanno(1987). 

Fong lucidly demonstrated, the  price of  default-free bond   depend  on interest rate volatility.   Fong and Vasick(1992) presented a  two-factor model  of the term structure

of interest rates.  The  two  driving factors are the short-term interest rate, r, and the volatility, v, of  it

II.  Model Specifications:   

Generally speaking,  ours is a three  factor  (affine) model. 

2.1.  Assumptions

Assumption 1:   the interest rate process

 let  r denote the short-term default-free rate. Its dynamics are given by:
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where (, (  are constant, and  z1  represent   a standard Wiener process.

This  specification  is  otherwise the same  with that of  Cox, Ingersoll, and Ross, except

Here,  the volatility (  is  no longer  deterministic, which will  follow a separate  stochastic  process  specified below.  

Assumption. 2.  The stochastic  volatility  process
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There are three  feature of this model  worth noting  regarding the  stochastic  process  by which  the  volatility is driven :

 First, the volatility is assumed  to be mean reverting. This is in congruence with  strong empirical  evidence   

 Secondly, we assume  an arithmetic rather than  a geometric process.  The trade-off here is that we gain  much more analytical tractability  while raising  the possibility   that  ( can become negative
. 

Thirdly , Unlike  the equation for the  short rate, the random components  has a variance  proportional to the  current level  of volatility. This  mean that  a very quite market (low ( ), while likely to become more  volatile in time, typically  will not  do so abruptly ; on the other hand, however, a very unstable   market are likely to either calm down suddenly, or become even more volatile (see Fong and Vasicek, 1991). 

Assumption. 3.  Signaling process of  default 

Following C-E-J, we assume that  there is a signaling  process with a  constant  lower threshold. Default occurs when this boundary is hit.   

Let x represent a signaling variable determining the occurrence of default., following the diffusion process:
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where ( and (x  are constants, and  process z3   is  uncorrelated  with z2  and  z1
The default  assumption is based on the notion of a “first hitting time”.  That is,  when x hits the boundary  xl (constant) , at which  the firm default on all its obligations.  

The  interpretation  of  x: 

1.  x can be viewed as  an instrumental variable for the  credit rating  of  the firm

1. x  as synthesized  index for credit event accumulation:

Credit Events include 

1. bankruptcy . 

2. downgrade

3.  repudiation:

Repudiation means that the reference entity refuses,  disclaims, repudiates, rejects or challenges the validity of, in whole or part, any of its outstanding obligations.  

*  Assumption 4.   Assuming  bankruptcy at maturity and  no early bankruptcy.

 At  first glance,  this assumption seems to  be too restrictive 

III. Solution of  the Model:

Method 1:

Let 
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Let  F(Yt, t)  be the  value of a defaultable  zero coupon   bond  at time t , contingent on the  realization of   x, r, v and  (=T-t, where T is  the stopping  time.   Then, we have:
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where E denotes expectation under some  ‘equivalent measure’.

Then  we know from  the “Feynman-Kac” formular that, under some technical conditions(See for example, Friedman (1975) and  Krylov(1980),  F  solves the backward Kolmogorov  partial  differential equation:
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Where  
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That is, F(r, v, x ;  () ( F(r, v, x ; T-t)   must satisfy the fundamental partial equation:
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The solution  of  the equation depends on the  following  boundary conditions:

1)   At the maturity  the  bondholder receives the face value of the bond if default has not occurred  during its life
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2)  As x approaches  infinity, the value of  the  defaultable bond approaches  the value of a default-free bond: 
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where  P(r,(,() is the price of a default-free discount bond given by Fong and Vasick (1991)

3)   When  default   occurs, the  risky bond-holder  receive 1-( default-free bond  with the same  maturity and  promised payment as the original security: i.e., when  x = xl :
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4) There are  boundary conditions for  r:

 

[image: image13.wmf]F

r

x

l

(

,

,

;

)

s

t

=

0

   as   r  ( (   

   In general,  such partial differential equation do not admit simple analytic solutions.

   Following  Cathcart (1998), we guess a solution of  the  form :
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 Such  that the function ((x,()  satisfies the  (self-evident ) conditions:

  ((x,0)=0 ; ((xl,()  =1 ; ((x,() = 0

and  P(r, (, () is the  price of the default-free bond given  by  Fong  and Vasick  (FV)

Under the equilibrium  condition of no arbitrage, FV show that prices of pure discount  bonds  have the  form :
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The  functions  H and G are given F  in Appendix
:

Given, the assumed format of solution,  it can be shown 
 that the PDE  above can be   simplified into following  
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Method  2 :

Alternatively, 

We take advantage  of  the fact that  the  system characterized by  < >,  < >  and   <. >   fits into the structure of exponential-affine model specified by Duffie and Kan (1996) 

The solution of   this type  of  model takes  the following  form:

P(r, (, x, ( )=  A(() ( exp[- rB(( ) -  (C(( ) –x D(( )]

Taking   the  appropriate derivatives, and substituting into the  fundamental PDE, we obtain:
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For the  above equation to be uniformly satisfied over the  support  of  r,(  and x,  all four of the terms in  brackets must  be equal to zero:
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 EMBED Equation.3  [image: image22.wmf]
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Empirical  Investigation    

We  combine historical (time series) analysis with  implied approach to estimate  the parameters.

For those parameters associated  with  interest  rate  as well as  the volatility , we  use GARCH method to estimate the  parameters . That is ,We  first  estimate   the system t
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 The above system represent essentially a quasi-GARCH-M formulation because the volatility  follows a GARCH process. (See appendix B) 

For  those  parameters associated  with  signaling  process, we  will  use Kalman Filter technique (see   Appendix D)  

Here, the  criterion  function for parameter  estimation is the minimization of the sum of squared  errors between model and  market price of  risky bond.   For a random sample 

, we  minimize the following criterion function:
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Since x is generally unobservable 

Appendix  E

:

The  Affine Models: 

This is a family of  interest  rate models which have been investigated theoretically and used  widely in finance  industries. 

Their popularity is due both to their tractability and to their flexibility .  Some of  them have explicit solutions(e.g. Longstaff and Schwartz). It is relatively straightforward to price bond and other instruments in this model, and it has sufficient free parameters so that  it can  fit  most  market term structure quite well.  

We consider a model  with n state variables, Xt =( X1,t, ……., Xn,t)’.  A model is affine  if the  pure discount bond price Bt (X,() can be written  in the form:
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Where (=T-t is the time to maturity of the  bond, a(()  is a scalar  function  of  ( and  b(()= (b1 ((),……bn (())’ is  a vector valued function of  (.  Spot rates are of  the form
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Obviously, it is not possible to allow  Xt  to have an arbitrary process.  Duffie and Kan(96) shows that the process for Xt  must  be the form 
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where wt  is an n-dimensional   Wiener process, ( and ( are constant n ( n  matrics, and ( is a constant n-dimentional vector.  Vt  is  a diagonal matrix of the form 
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where  (i ( R  , (i( Rn , I=1,….,n, are constants (with mild  regularity conditions to ensure that  (i + (i Xt , I=1,…,n , remain positive).

Consider,  for a  fixed maturity  T,  the zero-coupon bond prices process 
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where ((Xt) ( (V and
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That is,
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where
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(That is,  diag(() is a diagonal matrix with  each element in the vector  ( as the diagonal  elements)

On the other hand,  taking  risk-neutral
  approach, we have: 
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 where s and q are constants:
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 since, for instance, 
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Therefore  ((() and  b(()  satisfy the pair of differentiation:
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[image: image48.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

)

(

.

.

.

)

(

)

(

)

1

(

)

(

n

R

diag

diag

b

b

b

 and 

 ((i) is 1( n  vector with element from the ith  row  of   the  n( n  matrix ( whose colunns are the vectors  (i  (i=1,…n).  That is :
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with boundary conditions a(0) = 0  and  b(0) = 0.    b(()   may be solved  from ( A.9) and the solution substituted into ( A.8)  to solve for  a(().    (A9) is a Riccati equation, with coefficients quadratic in  b(() . There are  fairly  easy numerical solution methods available  for this type of  PDE.

For a concise  but lucid  discussion of  both advantage and disadvantage of  affine  models, see  John  Campbell, et al (1997),  page 441-442 

Appendix  B:

Stochastic  Volatility  and GAARCH  model    

GARCH stands for Generalized Autoregressive Conditionai Heteroskedasticity. Loosely speaking, you can think of heteroskedasticity as time-varying vartance. Conditional implies a dependence on the observations of the immediate past, and autoregressive describes a feedback mechanism that incorporates past observation into the present. GARCH then Is a mechanism that includes past variances in the explanation of future variances. More specifically, GARCH is a time series modeling technique that uses past past variances and past variance forecasts to predict future variance.

 Bollersev(1986) introduced the  GARCH(q,p)  process, where volatility  at times t depends on the  observed data at t-1, t-2,…., t-q, as well as on  volatilities at  t-1,t-2,,,,,t-p. 

The  equation  for GARCH (1,1)  is:
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 (B.2)

where (2n  is the  estimate of the volatility  for day n;  ( is the weight assigned to V, the long-run  average variance rate; ( is the weight assigned to (2n-1,  and ( is the weight assigned to u2n-1, the  most  recent observation on changes in the market variable.

Because the weights must sum to one: 

( + ( + ( = 1 

To put it in words,   A GARCH(1,1) model incorporates the assumption that today’s volatility depends upon three factors:

 (  a constant  (long-term) level 

 ( yesterday’s forecast variance, and

 ( latest “news” about  volatility 

Furthermore, the GARCH specification incorporates and handles well the frequently-observed financial time series behavior called "volatility clustering. “Volatility clustering” describes the situation wherein large volatility movements are more likely to be succeeded by further large volatility movements of either sign than by small movements. 

Another aspect of financial price and rate behavior that GARCH handles particularly well relates to the speed with which it "readjusts" in the aftermath of event-induced "shocks" to the time series in question. This can be demonstrated by the mean-reversion feature of the model: 

Substituting ( = 1-(( + () into (B.2) 

 The variance (rate) estimated for day n is :
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  so that
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on day n + k in the future we have 
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Taking expectation both side:
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(Given the fact that
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Using this equation repeatedly yields:
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    (B.3)

when ( + ( = 1(B.3) shows that the expected future variance rate equals the current variance rate. When ( + ( < 1, the final tem: in the equation becomes progressively smaller as k increases. Pigure 15.2 shows the expected path followed by the variance rate for situations where the current variance rate is different from V. The variance rate exhibits mean reversion with a reversion level of V and a reversion rate of 1 - ( -(.  This is straightforward to see, since:
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i.e, the expected change always has the same sign of the previous deviation from V.        

Maximum Likelihood  Method:

We consider the problem  of  estimating  the volatility updating  scheme  of  GARCH(1,1) from  m observations  u1, u2,…., um  when the underlying probability distribution of  ui conditional on the variance is normal   i.e. ( N(0, Vi  ), where Vi  
is  the variance estimated for day i. Then the  probability  density  for the  i-th  observation, ui,  is the  probability density function for a normally distributed variable with mean zero and  variance Vi :
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   and the ‘likelihood function  is therefore:

 Max
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,  Taking logarithms we see this is equivalent to :
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  St.  
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Note that  this  methods involve using an iterative procedure to determine the  parameter values that maximize the  likelihood that historical data will occur
. 

Limitation  of  GARCH:

1.GARCH models are parametric specifications that operate best under relatively stable market  conditions [9j. Alhough GARCH is explicitly designed to model time-varying conditional variances, GARCH models often fall to capture highly irregular phenomena, including wild market fluctuations (e.g., crashes and subsequent rebounds), and other highly unanticipated events that can lead to significant structural change.

2. GARCH models often fail to fully capture the fat talls observed in asset return series. Heteroskedasticity explains some of the fat tail behavior, but typically not all of it. Fat tail distributions, such as student-t, been applied In GARCH modeling, but often the choice of distribution is a matter of trial and error.
Appendix   C:  The  Kalman  Filtering  Estimation:  

For a Gaussian state-space model, the Kalman filter provides  an optimal solution to prediction of  unobservable state variable. The Kalman  filter recursion is a set of equations which allows n estimator to be updated once  a new observation becomes available. Suppose we have  a vector of observables  
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  .  Kalman filtering  approach is applicable if  the  model can be written in the form: 
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    the  measurement equation
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  the  system equation

 where  ct and  dt  are  m(1  and  n(1 vectors respectively.

   
A t are  n(m  matrix  

  
Bt  and
R t are  m(m  matrix  

       
(t  is  Gaussian noise  with variance Ht


(t  is  Gaussian noise  with variance Qt
A t, Bt , R t , Ht, Qt,  ct and  dt  may depend on  yt-1,  but not on yt.  
The Estimation  Procedure:

 Basic assumption:

  ( initial  estimates  a0,  and its  variance (P0 ) are  exogenously, determined

  ( a  convergence criterion  is set   to decide when to  stop the iteration

The Kalman filter  method is an iteration  process of  the  following: 

   1.  The prediction step.  We find :
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 Forecasts  are simply the unbiased conditional  estimates:
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2. Update Step:

At time t, we get a new observation,  yt
and the forecast error  υt is  
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  Let   Ft  denotes the variance of  υt,  i.e. Ft ≡ Var(υt,), then, 

  
[image: image75.wmf]t

t

t

t

t

t

H

A

P

A

F

+

=

-

,

1

|


   The new estimates a
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3.  The Parameter Estimation  Stop 

 It  is natural, but not essential,  to use  maximum likelihood  to estimate  parameter values. Set
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 Note that both Ft and υt  depend upon θ.

1-3 steps are  repeated  until the convergence  criterion  are  met.  

Appendix  D;

The  Default v.s  Bankrupcy

“Managing  default : Some evidence on  how firms choose between  workouts and   Chapter 11”

    Stuart C. Gilson   in  Corporate  Bankruptcy  edited by Jagdeeps S. Bhandari, Cambridge university Press, 1996

Appendix E:  Potential Application :

1. Credit  Risk in the  Sovereign Debt 

When investing in  the  sovereign debt of a foreign country, an investor must consider  two crucial risks one is political risk---the risk that even the central  government of the foreign  country  has the  financial  ability to pay its debts  as they come due, they mat choose  to default----for political reasons.  The second  type of  risk is credit risk – the same  old inability to pay one’ debts as they become due.     
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Duffie, Darrell  and  Rui Kan, 1996, “A yield-factor model of  interest  rates,”, Mathematical  Finance , 6, 379-406

Duffie, Darrell “Modeling Term Structures  of  Defaultable Bonds”

    The Review of  Financial Studies,  Special 1999 Vol. 12, No. 4, pp  687-720 

Franks, J., and W. Torous.  “An  Empirical Investigation of U.S. Firms in Renegotiation.”    Journal of  Finance, 44(1989),pp. 747-769
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�  For all its imperfectness,  the  temptation of  the simplicity  of  Merton’s model  seems difficult to  resist. 


 Indeed, the risk management services subsidiary of  Moody’s, the New York-based rating  agency; has     unveiled a  hybrid credit risk model for estimating a company’s probability of default  At the  core of  the system is a combination of   statistical analysis of various  factors  and  the  option-theoretic approach   based  on  Merton’s  classic model.     Risk,  , June, 2000, p15-16.  





� R is defined as  R=r+hL, where h denotes the hazard rate for default  at  time t and L  denoted the expected fractional loss in market value if default were to occur at time t)


� Affine models are  among the most tractable type of  interest rate models, and affine  models of one sort or another  are probably  the  most popular to implement.  See Appendix  A.  





�  AfFine models are particularly  suited  for  estimating using the Kalman  filter because of  their linear  structure. Non-linear  models  are  harder to  estimate by the standard  filter.  Also, in the affine case, sometimes   there  are   explicit formula for the yield curve (as in our case).  This means that  it is possible to use spot rates of different maturities in the estimation  procedure.      


� See, for example, Jackwerth & Rubinstein(1996).


� Arguments can be  made, however, that “objections to the arithmetic process are more theoretical than practical since mean reversion appears to be one of the most important empirical characteristics of volatilities (See Stein  and Stein, 1991) 


� See Mark J.P.Anson, 1999, ‘Credit Derivatives’, p158-160


� The solutions  proposed by FV involve computation of the confluent  hypergeometric  function.  However,   Selby and Strickland(1995) propose a series solution for F and G which can be  easily implemented  on a spreadsheet.  


� This section draw  heavily from  Chapter  7,  Interest  Rate  Modeling,  by Jessica James and Nick Webber, 2000


� It can be shown straightforwardly that :


� EMBED Equation.3  ��� and :





         � EMBED Equation.3  ���  where  (  can be  any  symmetric matrix. (Here, of course, (( ((T )


�  As  its name implies, risk-neutral valuation  involves pricing derivatives by assuming that all investor  are  risk-neutral. That is, at each instantaneous moment,  no ‘risk premium’ is attached to  any  security. The  (instantaneous) return  for any  risky  asset  is equal to the short term risk-free return.  This seemingly unrealistic assumption turn out to be a powerful tools in  evaluating of financial  products. See Grego ry Hayt (1998) for an excellent discussion  of this topic.  


�  An alternative, more robust approach to estimating  parameters in GARCH(1,1) is known as variance  targeting. This involves setting the long-run average variance rate,  V, equal  to the sample variance  calculated from the  data ( or to some other values that is  believed to be  reasonable.).  And only two  parameters have to be estimated.     See  R.Eagle, and J. Mezrich, “ GARCH for Groups,”, RISK, August 1996, 36-40. 





� To do so,  simply substitute  the expression   F  in terms  of  P  and  (   into  the equation <  >. Also note that  since P(r,v, () is the  default-free bond price specified by Fong and Vasicek, it satisfies the PDE:  � EMBED Equation.2  ���  
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