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Michael  Peng  

  
 Implementing an analytical approach in calculating Portfolio Loss Distribution 

                    

    (Saddle Points Approximation)

The accuracy in calculating economic capital depends on the efficiency in extracting   information about the loss distribution of portfolio of individual obligors with heterogeneous PDs, LGDs and exposures.  In addition, correlation structure must also be incorporated properly. The Saddle Point approximation method seems to strike a balance between  theoretical elegance and  practical convenience and  has rapidly become an established techniques for portfolio analysis (See  [4]  for example).   A strength of the saddle-point approximation is that it is generally accurate in the tail of the distribution, in fact becoming more accurate the further into the tail. This makes it well suited to a Value-at-risk calculation which searches for the loss corresponding to a small tail probability (e.g. 5% or 1%).

1. Background:

The method was first published by Richard martin ([1])in 1998.  Coincidentally, CreditRisk+ of Credit Suiss first Boston developed similar approach.  The idea was to find ‘closed-form’ solution of Credit  VaR  so that  sensitivity  analysis can be done easily and quickly.  The method works by using a Fourier-transformed variant of the portfolio loss distribution –the moment generating function (MGF). It turns out that stationary points of the MGF—which can be imagined as the flat areas (or saddle points) of a mountain range—contain lots of information about the shape of the loss distribution. This is important, because the portfolio loss distribution is notorious hard to handle, particularly in the tail portion corresponding to large unexpected looses. However, the saddle points of the MGF are much easier to find, and by exploring the shape of the MGF near these points, vital information such as the shape of the tail of the loss distribution can be obtained without costly Monte Carlo simulation. Moreover, this method works best for large, complex portfolios, and is an improvement over other techniques such as extreme value theory.           

Another feature that makes the saddle-point approximation suited to ECAP is that, due  to  its  analytical form, it becomes possible to search for the  loss corresponding to the tail probability  in Laplace  space, that is, by searching values of  
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 .  As a result  it is not necessary to compute a Laplace inversion for each trial value of the VaR, unlike for other numerical methods, leading to a great increase in speed. In summary, it has the following major advantages:

· Modeling tail risk without having to assume the shape of the whole loss distribution curve

· Analytical solutions of ECAP and Credit VaR) without  resorting to simulation 

· Compatibility with structure model, which has intuitive appeal

· Easily incorporating correlation structure via one-factor model  we’ve been using

· Potential capability in dealing with stochastic LGD      

· Simplified ways in modeling portfolio with complex structures

2. Theoretical  Foundation :

2.1.  Moment Generating Function.

In order to describe  the  approach we will employ to estimate  portfolio distribution and to  calculate economic capital,  we  introduce an useful tool: Moment Generating Function.

The moment generating function (MGF) of a random variable X is defined as:
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Like other clever mathematical transformation, MGF has many convenient properties.  

Example:

In some cases where the dense distribution of (individual) loan loss 
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 is very complex, there may be a tractable expression for the moment generating function (MGF) 
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The MGF of the random loss Xi is defined in terms of an auxiliary variable s (which could be complex):
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In general, MGF often posses a mathematical form much simpler than the  pdf  (
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).  In many  problems it is relatively easy to obtain the MGF but almost impossible to apply an inverse Laplace  transform which converts the MGF to a pdf :  i.e.
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However, it is convenient to define the  cumulant generating function
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In our case, the random loss variable Xi  is defined as  follow:
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 Assume that the probability of default (annual) for obligor i is 
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since Xi is essentially a discrete variable.

For a portfolio of n independent obligors, Y = 
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and its logarithmic cumulant generating function: 
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And the portfolio loss distribution can be recovered by an inverse Laplace transform:
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The tail probability of  Y  can be obtained  by :
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in which the path  of integration  is up the imaginative axis. Thus, we can resort to the  well-developed  theory  of complex  analysis  to deal with  
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 (or  P(Y>t) ) and to calculate Credit VaR and  ECAP.  Here:  

             ECAP = VaR (99.9%)  -Expected loss  (if threshold  > Expected value)  

The inverse Laplace transform integral in [8] is not always analytical tractable.  The saddle-point approximation represents an analytic alternative for this inversion step, with its analytic form leading to significant increases in efficiency.

Note, however, that the above expression can only be applied to portfolios consisting  of  independent  obligors.  Given our one-factor model, the loss variable Xi are correlated via the common factor Z.  How can we incorporate the correlation into the model?   The answer is factor model. 

2.2. Review of Factor Model  

Consider the case of a typical one-factor structural model of default. 

1.  The firm i’s asset Ai (returns) is driven by  two random factors (systematic Z and idiosyncratic (i,)=0): 
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such that the cov( Ai, Aj) = 
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 for i ( j ,  cov( (i, (j)=0 for i ( j and  cov( C, (j)=0  for all i. 

2. Individual obligor (or lease contract) will default when its asset Ai  falls below  its liability-related  threshold Ti .   The probability of  default is pi . 

3.  Once it does default, the loss is 
[image: image23.wmf]i
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, a constant for obligor i. In other word, there is no uncertain regarding the level of loss once default occurs (As opposed to the more general situation where h follow some probabilistic distribution). 

4. The loss Xi ,a random variable can be written as       
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where
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5. Default Probability: 
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2.3. Conditional Default Probability 

Denote 
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, i..e., the firm value return conditional on a specific  realization of the  systematic factor  Z.  Then we have 
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 for i ( j, Therefore, firm values (and resulting defaults) are conditionally independent.  It is followed that conditional individual asset loss 
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 are independent. Thus, the conditional moment generating function for the portfolio is:
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where
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denotes the probability of default of obligor i, conditional on Z=z. i.e.
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where
[image: image38.wmf]1
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F

stands for inverse of  normal distribution (Here we assume that  the systematic factor is normally distributed).

The single risk factor, which represents uncertainty in the broad credit cycle, is thus assumed to have a direct impact on the default probability of every obligor. When bad outcome is realized (small z), default probabilities are scaled up together, so the portfolio is likely to experience  higher than expected levels of loss.  When a good credit cycle is realized, (large z), default probabilities are scale down, and the portfolio loss is likely to remain below its unconditional expected value. 

We can then integrate the conditional MGF with respect to the distribution of the systemic factor Z [with density g(z)] to obtain the unconditional MGF:
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We also have:
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where the expression  of 
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is given  by  [10]  above.     

Given the distribution g(z),  we can  discretize the integral  by sampling on z :
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which can  be written  more succinctly as: 


[image: image46.wmf])

(

s

K

Y

 =
[image: image47.wmf](

)

))

1

[

[

log

1

i

sL

ik

ik

n

i

k

k

e

p

p

h

+

-

Õ

å

=





  
       [15]

where 
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 is the  probability of  the  ith obligor defaulting, given  that  Z=zk  . Then  [12] becomes:

where
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In other words, 
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 can be expressed as the log of  weighted average (across  the states of  systematic factor ) of  products of  the individual  MGFs. 

2.4. The Saddle Point Approximation 

Theoretically, we can now use equation  [8] in combination of  [15] to evaluate the tail probability. In reality, given the pool size of the portfolio, this could be a daunting task; we need a simplifying method. Here is where “Saddle Point Approximation” kicks in.

Referring to equation [8], the saddle-point approximation (see e.g. martin, Thompson &  Browne, 2001)  consists  of   approximating the term in the exponential (i.e. 
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Where  is the term ‘saddle-point’ come from?

Given the fact that KY(s) is  convex  (See Appendix) , the term in the exponential is ‘bowl-shaped “ , as s variables and is real  and the 
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  is  at minimum  in the real direction.  

On the other hand,  in the orthogonal direction (as the imaginative part of s varies), the term in the  exponential has instead a local maximum. (See reference  [3]) 

The lowest-order(truncating at the quadratic term and doing the resulting Gaussian integral) saddle-point  approximation  to the tail probability of Y is (The main  result):

For t > E(Y):
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where 
[image: image60.wmf]F

 denoting the cumulative normal distribution function

Therefore, if  we are able to calculate  the   
[image: image61.wmf]Y
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(s)  and its first two  derivatives, we can approximate  the tail of loss distribution easily  and thereby calculate VaR

3.  Excel Implementation:

We can implement the above procedure in Excel. 

Step 1: Pre set original input information:

PDi 

EADi

LGDi

Li= EADi*LGDi, 

 (i (estimated asset correlation) 

Ni (Nperclass): Number of  assets in each  credit bucket  (each bucket  could contain  single  asset)  

There will be N rows of contracts

Step 2:  Sampling systematic factor to get conditional data:

· Scenario weights: 
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       ( Here  we can use   Gauss-Hermite formula to  decide on weights : 
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· Conditional PD:
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, Based upon equation [16]), a N(m matrix can be formed with cell(j,k) being pjk , the default probability of obligor i under realized  factor scenario k.       

This matrix was laid out in the area cell AP4: BJ63, with formula [16] imbedded 

Step 3: Calculate the components of Moment Generating Functions:

 From  [13], we have 
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This step is implemented with function MGFsandcomponent(dfp, size, Nperclass, weights,  t)

Where:

Input:  dfp:   conditional probability matrix 
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Where the prime refer to ‘derivative with respect to  s

Output:

      A matrix :   For each row (Index of  s=1,2…..)  and each column (contract) calculate  weighted  M(s)’ , with the  first three columns being  K(s),  K(s)’ and K(s)” respectively       

With these expressions, we can estimate the “saddle point” in an Excel spreadsheet:     

Step 4 Finding the saddle point and computing VAR 

Given the condition [17], we can evaluate the tail probability at the ‘saddle point’ and compute VaR. i.e. The value t such that Prob(Y>t) = p, for a given  probability, use [18] with t replaced by 
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 Function: findsaddle:
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(equation [18])
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 as per  equation  [17])
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VaRp =
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Step 5.  Loss Calculation  

Expected Loss 
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(See appendix)

    This is computed in Function CalcEL 

Unexpected loss
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5.  Issues with current Excel implementation:

1. The current implementation focuses on small portfolios or  portfolios that consist bucketed obligors. The way the data were laid out does not lend itself to portfolio consisting lots of contracts. For example, the rows of the conditional probability matrix is indexed by weight sequence number while the columns were indexed by contract sequence. Given the limitation of column number (240 something) in Excel, however, this layout doe not lend itself to large portfolio.      

2.   The maximum size of  portfolio is limited by  the row limit (65000) of Excel   

3.   Extremely cell dependent, which make it very difficult to customize the program in terms of  modifying functions and   outputting  intermediate results.
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Appendix:  Important Properties of  MGF:

· Uniqueness.  It is not possible for two different distribution to have the same   MGF. Hence, the  MGF contains all the information  about the distribution. 

· Multiplication rule.  If X and Y are two independent  random variables then the MGF of  X+Y is the  product of MGF of  X and the  MGF of Y. 
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· Differentiability.   The moment-generating function is a complex-differentiable (analytic) function , and  this endows  it with  a variety of useful properties. One of them is extraction of moments:
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· Cumulant-generating function. It is  convenient to define the cumulant-generating function by the log of MGF, and this is also analytic . when independent  random variable are added, their cumulant-generating functions add:  K(s) = logM(s)
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· Convexity. Of crucial importance  to the development of the theory, K is convex.:
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      (    Cumulants. The cumulants are derivatives of  K evaluated at the original, in the  same way that the moments are the derivatives of M . Based upon [19a] and [19b]:
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Initialization:


i=0,� EMBED Equation.3  ���, p =0.01%,   ( (precision  criteria) 





� EMBED Equation.3  ���





Function: CaLcLoss
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