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Abstract 

 
We propose a new test for duration models with censoring -- popularly 

used in economics, finance and other fields -- using a novel 

computationally simple empirical survival function that utilizes 

information from censored observations. The impact of parameter 

estimation uncertainty is properly addressed, ensuring that the proposed 

test has an asymptotically valid Type I error. A simple resampling 

method is used to obtain critical values for the proposed test, and 

extensions to unobserved heterogeneity and competing risks are also 

considered.  A simulation study shows that the proposed test has its 

accurate sizes and good powers in finite samples.   
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1 Introduction

The modeling and analysis of lifetime data is of interest in many �elds, such as economics, �nance,

sociology, biomedicine and engineering (Allison 1984, Lancaster 1992, Lawless 2003).1 The subject of

interest is the time to the occurrence of an event of interest, or equivalently, the instantaneous exit rate

from a current state.

Various examples can be found in economics and �nance. In labor economics, duration models are

regarded as the reduced forms of behavioral models based on job search theory and are widely used to

analyze unemployment spells (Kiefer 1988, Lancaster 1992). For example, Kiefer (1985, 1988) introduces

a simple job-search model which leads to the exponential distribution model of unemployment duration.

In this model, it is assumed that both the instantaneous unemployment utility and job o¤er arrival rate

are exogenous and constant, and the utility of being employed depends on the wage. As a result, the

worker�s optimal behavior is described by a reservation wage policy, resulting in a constant transition

rate to employment. In market microstructure, the asymmetric information model suggests that time

between trades contains important information about event uncertainty, thus a¤ecting the behavior of

quotes, spreads and transaction prices (Easley and O�Hara, 1992). To accommodate such features, Engle

and Russell (1998) and Engle (2000) use the accelerated failure time model, allowing past information to

a¤ect trade frequencies. In credit risk analysis, instantaneous probabilities of default for counterparts

of banks or credit card companies�portfolios are studied extensively. Representing the state of art in

reduced form models, hazard models have showed considerable �exibility to conduct dynamic analysis and

bridge the gap between default prediction and default risk pricing (Lando 2004). For example, Shumway

(2001) and Chava and Jarrow (2004) adopt discrete logistic hazard models for bankruptcy prediction;

Bharath and Shumway (2006) and Du¢ e et al. (2006) use Proportional Hazard models for the same

purpose.

Duration models are also widely used in other disciplines in social science. In demographic analysis,

men and women enter into or exit from cohabitations or marriages, or enter into parenthood (Hoem 1983;

Manning 1995; Michael and Tuma 1985; Monahan 1963). In organizational ecology, �rms or organizations

(Barnett 1997; Carroll and Hannan 1989; Haveman 1992) are created or ended. In marketing applications,

consumers switch from one brand to another or purchase the same brand again (DuWors Jr. and Haines

Jr. 1990), to name a few.

Despite the diversity of topics, social science data have several common important features. They are

1Terminologies vary across �elds. Popular terminologies include duration models, hazard models, lifetime models, failure
time models, survival analysis and event history study.
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usually nonexperimental, and durations rarely follow the same distribution unconditionally but rather

display systematic di¤erences across subgroups. The source of di¤erences is represented by covariates

or explanatory variables which could vary across time. More often than not, duration data are censored

so that only partial information is available for censored observations. For example, when an individual

leaves the sample before completing an unemployment spell, only the lower bound of his or her spell

is known. A successful model should accommodate these features and should be consistent with the

underlying economic theory as well. Therefore, model speci�cation is always arduous but essential.

Misspeci�cation leads to incorrect implications of social agents�behavior and the environment they are

assumed to face. The consequences of model misspeci�cation are not trivial; hence model validation has

attracted increasing attention from academia, industry and policy community.2

Surprisingly however, despite the importance of model speci�cation, relatively little research has been

devoted to diagnostic testing of duration models, particularly when dealing with censored observations.

There are two categories of diagnostic tests in the existing literature, the informal graphical method

and formal statistical method. Lancaster and Chesher (1985) propose a graphical diagnostic based

on the integrated hazard function, which is one form of generalized model residuals.3 Under correct

model speci�cation, the integrated hazard has a unit exponential distribution. The informal graphical

check investigates on the departure of the integrated hazard from unit exponential by plotting minus the

logarithm of the sample survivor function at the point of each exponential residual against the residual

itself. The points with uncensored observations should lie approximately on the 45 degree line (subject to

sampling variations) if the duration model were correctly speci�ed. Under light censoring, residual plots

can often reveal surprising departures from the hypothesized model and suggest directions for potential

improvement. This intuitive graphical method can serve as a starting point for diagnostic check and is a

useful complement to formal statistical methods. Because only uncensored durations are transformed by

the integrated hazard function and used in plotting, the plots do not contain any information on censored

2For example, the Payment Cards Center of the Federal Reserve Bank of Philadelphia and the Wharton School�s Financial
Institutions Center hosted a forum on validation of consumer credit risk models in 2004. This forum brought together experts
from industry, academia, and the policy community to discuss challenges surrounding model speci�cation strategies and
techniques. Participants agreed that a credit risk model�s performance can have important e¤ects on market share, perhaps
even creating adverse selection problems due to model misspeci�cation. As competitive pressures and technology advances
continue, implementation of new model validation techniques will rise in importance. Another example is well known
in labor economics: the failure to account for unobserved heterogeneity usually results in spurious duration dependence.
In terms of policy implication, duration dependence may suggest an early installation of reemployment training, whereas
heterogeneity suggests the opposite.

3Cox and Snell (1968, 1971) give a de�nition of generalized model residuals. Suppose � is an unknown parameter vector
and f"ig are unobserved i.i.d. random variables. If each observation Yi depends on only one of the f"ig, then one could
write Yi as a function of � and "i, which may have a unique solution such that "i can be expressed as a function of Yi and
�. Substituting � with its MLE �̂ will then yield a generalized model residual ei.
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observations, making this method of limited use with censored data and even inapplicable under heavy

censoring. Moreover, the test is based on parameter estimates instead of the true parameter values. This

can introduce a nontrivial impact of parameter estimation on the behavior of general residuals.

Formal statistical tests have been contributed by Chesher (1984), Lancaster (1985), Kiefer (1984,

1985, 1988), Sharma (1987), Jaggia (1997) and Prieger (2000). All of them are Lagrange Multiplier

(LM) tests based on certain moment restrictions. In duration analysis, tests are often constructed

against an arbitrary alternative parametric speci�cation, such as the presence of heterogeneity of unknown

parametric form. LM tests are thus preferred to Wald or Likelihood Ratio tests because the alternative

model does not have to be estimated when LM tests are used. According to the moment restrictions

and their purposes, they can be roughly divided into three categories: raw moment-based (RM) tests,

Laguerre Polynomial-based (LGP ) tests and LM tests for heterogeneity (Prieger 2000).

The RM test, suggested by Kiefer (1988), gives a simple diagnostic procedure based on the raw

moments of the integrated hazard. If the null model were true and the observations are not censored,

the exponential residual should have the rth moment equal to r!. The RM test checks the validity of

these moment restrictions.

Kiefer (1985) also develops an innovative alternative to the RM test�the Laguerre Polynomial (LGP )

test. This score test is designed for the null hypothesis of exponentially distributed durations against

a general alternative with Laguerre polynomial series expansions. Sharma (1987) generalizes Kiefer�s

method to test the null hypothesis of Weibull distributed durations. The LGP test essentially checks

certain orthogonal polynomial-based moment restrictions implied by the null. This method is appealing

for its simplicity and intuitiveness. However as pointed out by Kiefer (1985), �the null that is being

tested is tested conditionally on estimated values of the parameters ... . Consequently, the stated

asymptotic size of the test reported here is conservative in the sense of leading to more rejections than

the unconditional test if the nominal size is strictly interpreted�. Meanwhile, similar to the informal

graphical method, censored observations are discarded in the LGP test. If censored observations are

considered, the generalized residual would behave approximately like a censored sample from standard

exponential variables under the null (Lawless 2003, Chapter 6).

Chesher (1984), Kiefer (1984) and Lancaster (1985) develop LM tests for neglected multiplicative

heterogeneity. Neglected heterogeneity is of special interest because it can lead to biased predictions

and false interpretations. The approaches of Kiefer (1984) and Lancaster (1985) are a bit di¤erent,

but are both based on approximations to the distribution of the heterogeneous component, leading to

essentially the same statistics (Sharma 1987). Chesher (1984) points out that in the uncensored case, their
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tests are equivalent to White�s (1982) Information Matrix (IM) test when the variance of heterogeneity

is small. Their tests investigate whether the residual variance is unity, which is the second moment

restriction implied by the unit exponential distribution. However the IM tests are notorious for their

poor sizes in �nite samples (Horowitz and Neumann 1989). In this case Jaggia (1997) shows that the

variance calculation of the mean score ignores the covariance between scores (with respect to di¤erent

parameters), resulting in an underrejection for the null hypothesis. As a remedy, Horowitz (1994) shows

that bootstrap can control the size. Nevertheless, its usefulness can be limited under censoring as the

interaction of censoring and misspeci�cation complicates the problem (Lancaster 1985).

Prieger (2000) extends all aforementioned tests to censored data. For the RM test, he derives raw

moment conditions for censored samples, which are much more tedious than for uncensored samples. For

the LGP test, he calculates sample moments for censored observations based on Laguerre polynomials. It

turns out that the modi�ed Laguerre polynomials are no longer orthogonal, resulting in the loss of their

computational advantage in censored cases. He extends the LM test for heterogeneity to censored data

and uses higher-order approximations of the likelihood function in the construction of his test statistic,

hence improving power of the test. Prieger�s (2000) extension nicely incorporates information of censored

observations, but still ignores parameter estimation uncertainty.

In this paper, we develop a new approach to testing the adequacy of duration models with censoring.

Essentially, our test inspects misspeci�cation over the whole distribution by using all available information

in the complete as well as censored observations. In addition parameter estimation does not a¤ect the

asymptotic distribution of our test statistic. Overall our approach has the following advantages over

existing tests.

First, our test is based on the conditional duration distribution rather than its moments only. It can

detect model mis�ts in duration distribution even if certain moment conditions hold.

Second, by exploiting the property of observable random censoring, we propose a novel computation-

ally simple empirical survivor function, which e¢ ciently makes use of all available information contained in

complete and censored observations. To use this rather than the popular Kaplan-Meier (KM) estimator,

we avoid the notoriously di¢ cult asymptotic analysis of KM-based test statistics and the corresponding

time expensive computation.

Third, unlike some existing tests, whose applications are limited, our test does not specify any alter-

native and is generally applicable. On the other hand, the LM test for heterogeneity does not go beyond

testing omitted heterogeneity while the LGP test can only handle nested hypotheses,.

Four, our test does not require any particular estimation method; any
p
n-consistent parameter esti-

4



mators can be used. Thanks to the use of Wooldridge�s (1990) device, the asymptotic distribution of our

test statistic is not a¤ected by parameter estimation uncertainty, making our test easily implementable.

Last, our test is computationally simple. It is coded easily and takes signi�cantly less time to run

than most existing tests. In contrast, the moment derivations of the LGP test and the LM test are

tedious especially under censoring, and programming varies according to the number of moments used.

Section 2 introduces the framework and states the hypotheses of interest. Section 3 proposes a new

empirical survivor function under censoring, develops our test and derives its asymptotic distribution.

This asymptotic distribution is not distribution-free, making the tabulation of critical values impossible.

Section 4 introduces a simple resampling method to obtain the critical values of our test statistic and

justi�es its validity. Section 5 discusses how to extend our test to accommodate unobserved heterogeneity

and competing risks. We present Monte Carlo evidence on the �nite sample performance of the proposed

test in comparison with some existing popular tests in section 6. Section 7 concludes. All mathematical

proofs are collected in the appendix. Throughout, we use � to denote a generic bounded constant, and

k�k the Euclidean norm.

2 Framework and Hypotheses of Interest

The focus of duration analysis is the time to the occurrence of event of interest, namely, the lifetime.

However, lifetimes are usually incomplete, in which case censoring times are observed instead. Moreover

social science data are rarely homogeneous, requiring a careful use of covariates to account for systematic

di¤erences across groups (Lancaster 1992). Consistent with these stylized facts, we consider the following

data generating process:

Assumption A.1: Available data for duration analysis contain n observations. For the ith ob-

servation, i = 1; :::; n; the minimum of lifetime ~Ti and censoring time ~Ci; denoted ~Vi = min( ~Ti; ~Ci); is

observable, together with an indicator �i � 1( ~Ti � ~Ci) for whether censoring occurs. Moreover, certain

individual characteristics denoted by Xi, a k � 1 vector are also observed.

2.1 Survivor Functions and Hazard Functions

In duration analysis, the survivor function gives the upper tail area of the lifetime distribution, i.e., the

probability that random variable ~T is larger than certain value t 2 [0;1); conditional on X;S(tjX) =

Pr( ~T > tjX): Let F (tjX) be the lifetime distribution function, conditional on X: Then S(tjX) =

1� F (tjX).
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The hazard function de�nes the instantaneous exit rate, characterizing the way in which the risk of

failure varies with time. In continuous time, it is de�ned as the probability of exit from a state in the

short interval of length �t after t, conditional on the state still being occupied at t;

h(tjX) = lim
�t!0

Pr(t � ~T < t+�tj ~T � t;X)
�t

=
f(tjX)
S(tjX) ;

where f(tjX) = d
dtF (tjX) is the conditional probability density function of ~T given X:

Mathematically the functions F (tjX); S(tjX) and h(tjX) can be used interchangeably to describe a

lifetime distribution. Nevertheless social science theories often suggest direct speci�cation of the hazard

function as a result of optimal choices by the agents (structural models) or the relevant regressor variables

and the probable directions of their e¤ects (reduced form models). For example, Kiefer (1985) provides

a highly stylized two-state job search model. This economic model leads to a constant instantaneous

probability of re-employment. Correspondingly, this suggests an exponentially distributed duration model

with h(tjX) = ; S(tjX) = exp (�t) and F (tjX) = 1� exp (�t) :

Another example is Cox�s (1972, 1975) proportional hazard model, h(tjX) = h0(t)h1(X); where h0(t)

is the baseline hazard function, or the hazard function in absence of covariates. The name �proportional�

comes from the fact that the ratio h(tjX)=h0(t) = h1(X) is constant over time t. This greatly simpli�es

inference on duration models, because Cox (1972) suggests an ingenious method to estimate the unknown

model parameters of a parametrized h1(X) without having to specify the form of the common function

h0(t). Although there are few social-scienti�c justi�cations of why hazard should be proportional (Lan-

caster 1992), this speci�cation gains unparalleled popularity because of its analogy to regression models.

By a transformation of time scale, any form of hazard function can be integrated into a constant

hazard, known as the integrated hazard, H(tjX) =
R t
0 h(sjX)ds and this facilitates the transformations

among F (tjX); S(tjX) and h(tjX); i:e:; S(tjX) = exp [�H(tjX)]. Almost all existing tests for durations

are based on this property.

2.2 Types of Right Censoring

Lifetime data often come with the property known as right censoring for a variety of reasons that are

usually a consequence of a researcher�s data collection or observation plan (Lawless 2003). When data are

subject to censoring, lifetime ~Ti is not always observable. It is important to understand the process by

which censoring times arise in order to facilitate statistical analysis. Right censoring could come up for

di¤erent reasons, sometimes planned such as the designed ending of a survey, and sometimes unplanned
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as in the case when surveyed individuals are lost to follow up. The following three censoring mechanisms

are the most common in practice.

Type I Censoring

Type I censoring arises when there is a �xed calendar time censoring for each individual such as the

termination of a study. Type I censoring is also called time censoring (Nelson 1982). In this case,

~Ti is only observed when ~Ti � ~Ci, otherwise only ~Ci is observed. Thus, (�i = 1; ~Vi = ~Ti) denotes a

complete observation while (�i = 0; ~Vi = ~Ci) denotes a censored observation. However, a �xed calender

time censoring does not necessarily imply a uniform censoring time for all individuals. Only under the

special case when all individuals start their lifetimes simultaneously would the censoring times be identical

(�xed type I censoring). In most cases random samples dictate random entries into the initial state, so

individuals have random censoring times (random type I censoring). Type I censoring occurs when a

study is conducted over a speci�c time interval, which often comes up in social science models (Anderson

and Portugal 1987, Orbe, Ferreira and Nunez-Anton 2001, Roszbach 2004, Bijwaarda and Ridder 2005).

Type II Censoring

Type II censoring occurs when only the smallest r lifetimes are observed in a random sample:

~T(1) � � � � � ~T(r); 1 � r � n: This scheme arises when n individuals start their lifetimes together and

the study ends whenever the �rst r (r � n) failures are observed. Type II censoring is thus known as

failure censoring (Nelson 1982). The total study time here is ex-ante random because ~T(r) is random.

Also the censoring times ~C = ~T(r) are the same for the rest n� r individuals. Type II censoring is more

common in an experimental engineering environment such as termination of the life test on bulbs when

a prespeci�ed number of bulbs fail.

Independent Random Censoring

Another simple yet often realistic random censoring is independent random censoring, where each

individual is assumed to have a lifetime ~Ti and a censoring time ~Ci, and ~Ti, ~Ci are independent continuous

random variables across individuals. Moreover, all lifetimes and censoring times are assumed mutually

independent. In this case, ~Ci may not be observable. This type of censoring usually occurs in medical

studies, when competing risks are present, or if individuals drop out of the study or are lost to follow up.

It also occurs in social science studies (Hochguertel and Soest 2001, O�Hagan and Stevens 2004).

Other types of censoring could be present as well although less often, such as left censoring or interval

censoring, and usually data are subject to more than one type of censoring. For concreteness, we focus

on the following censoring scheme in this paper.

Assumption A.2: All censoring times f ~Ci : i = 1; :::; ng are observable and independent across
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individuals. Moreover, f ~Cig and f ~Tig are mutually independent conditional on Xi.

This assumption allows �exible censoring schemes. First of all, (even unconditional) independence

between lifetimes and censoring times are usually satis�ed in practice. Most of the time, censoring is a

consequence of the empirical researcher�s observation or data collection plan, normally independent of the

sample feature. Secondly, as is almost always the case, random sampling dictates the independence among

censoring times. Finally, the assumption of observable censoring times accommodates several types of

censoring, random type I censoring and independent random censoring with observable censoring times.

Therefore our assumption here actually covers many interesting cases in social science studies. For

example, the censoring schemes in credit risks are almost all random type I censoring (Roszbach 2004).

2.3 Hypothesis of Interest

To state the hypotheses of interest, we introduce the following assumption on fXi; ~Tig :

Assumption A.3: f(Xi; ~Ti) : i > 1g is an i:i:d: sequence with an unknown conditional distribution

function F (�jXi) of ~Ti given Xi:

Since social science data are usually heterogeneous, lifetimes f ~Tig seldom follow the same distribution

unconditionally. However, conditional on covariates, ~TijXi often displays the same distribution, so it is

appropriate to specify a common conditional distribution function under most scenarios. In general, all

regression models (among which proportional hazard is a special case) automatically satisfy Assumption

A.3 (Lawless 2003).

Often practitioners specify a parametric model for the hazard function h (tjXi), which is equivalent

to a parametric speci�cation for the conditional distribution F (�jXi). For convenience, we state the

hypotheses of interest in terms of the conditional distribution here. Let F0(�jXi; �) be the conditional

distribution of ~Ti given Xi, implied by a hazard model to be tested, where � is a �nite-dimension

parameter space. Then our hypotheses of interest can be stated as follows:

H0 : F (�jXi) = F0(�jXi; �0) for some unknown �0 2 � vesus

HA : F (�jXi) 6= F0(�jXi; �) a.s. for all � 2 �:

3 New Goodness-of-�t Test

We now propose a new approach to testing the parametric adequacy of a duration model. To provide

some intuition and insight, we will �rst discuss the heuristics of our new test, and then introduce it

formally.
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3.1 Heuristics

Our good-of-�t test is based on the comparison between a simple empirical survivor function and its

parametric counterpart under the null H0, where the empirical survivor function fully makes use of the

information from both complete and censored observations. Because our hypotheses of interest are

parametric models for the conditional distribution of lifetime ~Ti given Xi, one might be tempted to

use Andrews� (1997) seminal conditional Kolmogorov (CK) test. However, the CK test only applies

to the case of no censoring. For lifetime data, censoring is more often than not. Therefore, a new

empirical distribution function (or equivalently, survivor function) is needed to take account of censored

observations. To address this, we introduce a novel simple empirical survivor function that nicely

incorporates all available information.

3.1.1 An Empirical Survivor Function under Censoring

In the absence of censoring, we can easily implement a conditional probability integral transformation.

This yields a series of generalized residuals that will be uniformly distributed on [0; 1] under H0, i:e:;

fF0( ~TijXi; �0); i = 1; :::; ng is an i:i:d U [0; 1] sequence under H0. This suggests that we can construct

goodness-of-�t tests by comparing an empirical distribution or survivor function of F0( ~TijXi; �0) with

U [0; 1] distribution. This is the basic idea behind the classical Kolmogorov-Smirnov (KS) test and

Cramer-von-Mises (CV ) test. Compared to moment-based tests, the use of the distribution function

makes it possible to detect a wider range of model misspeci�cations. However, data incompleteness due

to censoring makes the above idea di¢ cult to implement because F0( ~TijXi; �0) is no longer uniformly

distributed when ~Ti is censored. Moreover, the true parameter value �0 is unknown in practice and has

to be replaced by an estimator �̂ that is consistent for �0 under H0. It is well known that the parameter

estimation uncertainty in �̂ complicates the asymptotic distribution of test statistics such as those of KS

test and CV test. In fact Lawless (2003, Chapter 10) suggests the idea of using uniform residuals to

form omnibus tests. He cautions, however, �censoring or other forms of incompleteness in the data may

make it di¢ cult to �nd test statistics�. Our approach in this paper provides a solution to this di¢ culty.

To overcome this di¢ culty, we �rst introduce a simple empirical survivor function in the presence of

censoring, which accommodates most commonly encountered censoring schemes in social science while

making tractable test statistics feasible. In particular, we transform both the original lifetimes and

censoring times by the null conditional lifetime distribution function F0( ~TijXi; �). More speci�cally, we
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de�ne the following probability integral transforms:

Ti(�) = F0( ~TijXi; �);

Ci(�) = F0( ~CijXi; �);

Vi(�) = min [Ti(�); Ci(�)] :

Let Ŝv(t; �) and Ŝc (t; �) be the empirical survivor functions of fVi(�)g and fCi(�)g respectively; that is,

Ŝv(t; �) =
1

n

nX
i=1

1 [Vi(�) > t] ;

Ŝc(t; �) =
1

n

nX
i=1

1 [Ci(�) > t] :

Then we propose the following empirical survivor function for fTi (�)g applicable to both censored and

uncensored observations:

ŜT (t; �̂) =
Ŝv(t; �̂)

Ŝc(t; �̂)
:

Theorem 1 below shows that no matter whether there is censoring, ŜT (t; �) can consistently estimate

the population survivor function ST (t; �) = E f1 [Ti(�) > t]g of fTi(�)g:

Theorem 1. Suppose Assumption A.1-A.3 hold. Then under the null hypothesis H0;

Ŝv(t; �0)

Ŝc(t; �0)

p�! 1� t:

Obviously when data are complete, i:e:;when ~Ti � ~Ci for all i; we have Vi(�0) = Ti(�0) and Ŝc(t; �0) =

1. In this case, the function ŜT (t; �0) simpli�es to the conventional empirical survivor function,

ŜT (t; �0) =
1
n

Pn
i=1 1[Ti(�0) > t]: Andrews� (1997) CK test applies to this uncensored case, but is

still more computationally burdensome than our test to be proposed below. To see that, let us brie�y

review several properties of the CK test. Firstly, to circumvent the problem that the parametric model

does not specify the distribution function of Xi, the CK test compares the empirical distribution function

with the semi-parametric/semi-empirical distribution function. Secondly, the CK statistic is de�ned by

taking supremum over the sample fXi; ~Tigni=1: Consequently, the CK test depends on signs of the ele-

ments (Xi; ~Ti) in the random sample: To obtain a sign invariant CK test statistic, one has to explore all

possible sign permutations and de�ne a resultant CK test statistic to be the maximum of these statistics,

which is undoubtedly time consuming. In contrast, we transform the original data by the null conditional
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parametric distribution function, which obviates the di¢ culty of de�ning a semi-parametric distribution

function. The computational advantage is phenomenal, because we "reduce" the dimensionality from

Rk+1 to R and we do not have to worry about the problem of sign dependence of test statistics.

In duration analysis, the Kaplan-Meier empirical survivor function is generally applicable to various

random censoring schemes, including the random censoring scheme we are considering. Unfortunately

it leads to formidable statistical inference procedures. When the Kaplan-Meier estimator is used, a

KS or CV test statistic can only be derived under the framework of counting processes (Lawless 2003),

and its asymptotic analysis is notoriously di¢ cult. As Fleming and Harrington (1991) and Andersen et

al.(1992) point out, elegant mathematical derivations fail to generate easily usable tests. Sun (1997)

gives some results. Even more complicated, with heterogeneous data which are normally encountered

in social science, a conditional Kaplan-Meier estimator (Beran 1981) has to be used, where survivor

functions are estimated locally for di¤erent X 0
is. Thus, although we could use the conditional Kaplan-

Meier estimator to form a test, the asymptotic distribution may not be tractable and is computationally

expensive. Meanwhile in economic settings, available samples are usually small after conditioning on

covariates, therefore the Kaplan-Meier estimator is �unlikely to prove successful in econometrics because

the available samples are small especially after cross-classi�cation by regressor variables�(Heckman and

Singer 1984). The Kaplan-Meier estimator covers all random censoring schemes,4 while in social science

studies certain types of censoring as described in Assumption A.2 are predominantly common. Our

simple empirical survivor function ŜT (t; �) thus exploits the characteristic of this speci�c but commonly

encountered type of censoring. The simplicity of this estimator transmits to the manageability of

the asymptotic theory associated with the proposed test statistic. It also simpli�es a great deal the

implementation of the proposed test.

3.1.2 Impact of Parameter Estimation Uncertainty

Under H0 and no censoring; the probability integral transforms fTi (�0)g is i:i:d:U [0; 1] : Therefore the

population survivor function ST (t; �0) = 1 � t under H0: Intuitively we can test H0 against HA by

comparing ŜT (t; �̂) with 1� t: Any signi�cant di¤erence between them is evidence of model misspeci�ca-

tion. However, we cannot proceed with this intuition without scrutiny, because fTi(�̂)g are not exactly

i:i:d:U [0; 1] (Lawless 2003).5 In another word, the estimated parameter �̂ in some sense "contaminates"

4The Kaplan-Meier estimator gives the nonparametric maximum likelihood estimator of the survivor function of randomly
censored lifetime data (Fleming and Harrington, 1991).

5Lawless (2003) warns that, when using estimated parameters to implement probability integral transformations, the
estimated residual Ti(�̂) = F0( ~TijXi; �) is only approximately, but not exactly i:i:d: U [0; 1], so care must be given to the
distribution of any such statistic.

11



the asymptotic distribution of our test statistic. In fact one common caveat for the existing tests in the

literature is that the impact of parameter estimation uncertainty in �̂ is not taken into account. When

tests are constructed using the estimated parameter rather than the true parameter �0, nontrivial uncer-

tainty is introduced into the test statistic even asymptotically. Kiefer (1985) notes that such uncertainty

normally generates a poor (indeed asymptotically invalid) size of the test. To gain insight into the impact

of parameter estimation uncertainty and how we remove it, we de�ne

Ui(t; �) =
1[Vi(�) > t]� (1� t)1[Ci(�) > t]

Ŝc(t; �)
; t 2 [0; 1];

then ŜT (t; �)� (1� t) = 1
n

Pn
i=1 Ui(t; �) � 1p

n
M̂n(t; �), say. Under H0, we have

M̂n(t; �0) =
1p
n

Pn
i=1 Ui(t; �0)

p!
p
n[ST (t; �0)� (1� t)] = 0 for all t 2 [0; 1]. This forms the basis of our

test.

Under regularity conditions (see Assumption A.4 and A.5 below), we can show (see proof of Theorem

2) that, M̂n(t; �) has the following asymptotic representation:

M̂n (t; �) = M̂n(t; �0)�
1

Sc(t; �)
�g(t; �; �0)

0pn (� � �0) + op(1); (3.1.1)

where �g(t; �; �0) = p lim 1
n

nX
i=1

�
1[Ci(�) > t]

@
@�F0[F

�1
0 (t; �); �0]j�=�0

	
and op (1) is uniform in t 2 [0; 1]:6

Clearly the asymptotic distribution of M̂n(t; �̂) depends on the limiting distribution of M̂n(t; �0) and

the limiting distribution of
p
n(�̂ � �0):7 Consequently test statistics based on M̂n(t; �̂) will not be

asymptotically free of the impact from the parameter estimation �̂. Deriving the limiting distribution

of M̂n(t; �̂) normally entails �nding the asymptotic variance of �̂ and the covariance matrices between

M̂n(t; �0) and
p
n(�̂ � �0), but the resulting test statistics can be hard to compute (Wooldridge 1990).

This is particularly relevant to the present context, because of the involvement of nuisance parameters.

To take into account such impact, one either needs to make additional assumption about the expansionary

form of �̂ (Andrews 1997), or needs to rely on certain conditions derived in parameter estimation (for

example, the score functions of MLE), which in turn ties the method to one speci�c estimation procedure.

The convenient "purging" technique introduced by Wooldridge (1990), on the other hand, requires neither

of these, making it especially �exible and attractive. With the adoption of Wooldridge�s (1990) device,

the asymptotic distribution of our test statistic is free of the impact of parameter estimation. One

6F�1Xi
(t; �) is the inverse function of FXi(t; �):

7Actually it depends on how �0 is estimated.
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can treat the test statistic as if it were calculated at the true parameter value �0; and this saves all the

trouble of calculating corresponding covariance matrices similar as the ones between the �rst term and

the second term in (3:1:1): Moreover, this device is computationally simple, only requiring the running

of an OLS regression. We will use Wooldridge�s (1990) idea to purge parameter estimation impact in

our test statistic.

Wooldridge�s (1990) idea is based on the fact that OLS residuals are orthogonal to explanatory

variables. Suppose E [� (Ti; Xi; �0) jXi] = 0 is the hypothesis of interest, where function � (Ti; Xi; �0) is

di¤erentiable with respect to �: Then the validity of such hypothesis can be tested by choosing some

misspeci�cation indicator function � (Xi; �0) of the explanatory variables Xi and checking whether the

sample covariance between � (Ti; Xi; �0) and � (Xi; �0) is signi�cantly di¤erent from zero. To derive the

asymptotic distribution of this sample covariance, we employ a Taylor series expansion:

1p
n

nX
i=1

�(Xi; �̂)�(Ti; Xi; �̂)

=
1p
n

nX
i=1

� (Xi; �0) � (Ti; Xi; �0) +
p
n(�̂ � �0)0

"
1

n

nX
i=1

� (Xi; �0)
@

@�
� (Ti; Xi; �0)

#
+ op(1):

The second term is the uncertainty impact of parameter estimation and it a¤ects the asymptotic dis-

tribution of the sample covariance. To purge this, Wooldridge (1990) proposes the modi�ed sample

moment
1p
n

nX
i=1

h
�(Xi; �̂)�G(Xi; �̂)0�̂(�̂)

i
�(Ti; Xi; �̂); (3.1.2)

whereG(Xi; �) = E
�
@
@�� (Ti; Xi; �) jXi

�
and �̂ (�) =

�Pn
i=1G (Xi; �)

0G (Xi; �)
��1Pn

i=1G (Xi; �)
0 � (Xi; �).

Note that �(Xi; �̂)�G(Xi; �̂)0�̂(�̂) is the OLS residual of regressing �(Xi; �̂) on the gradient G(Xi; �̂):

Since �̂(�) = �(�0) + op(1); where � (�0) = fE
�
G (Xi; �0)G (Xi; �0)

0�g�1E [G (Xi; �0) � (Xi; �0)] ; we
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have the modi�ed sample variance

1p
n

nX
i=1

h
�(Xi; �̂)�G(Xi; �̂)0�̂(�̂)

i
�(Ti; Xi; �̂)

=
1p
n

nX
i=1

h
�(Xi; �̂)�G(Xi; �̂)0�(�0)

i
�(Ti; Xi; �̂) + op(1)

=
1p
n

nX
i=1

[� (Xi; �0)�G(Xi; �0)0�(�0)]� (Ti; Xi; �0)

+
p
n(� � �0)0

1

n

nX
i=1

[� (Xi; �0)�G(Xi; �0)0�(�0)]
@

@�
� (Ti; Xi; �0)

+
p
n(� � �0)0

1

n

nX
i=1

[
@

@�
� (Xi; �0)�

@

@�
G(Xi; �0)�(�0)]� (Ti; Xi; �0) + op(1)

=
1p
n

nX
i=1

[� (Xi; �0)�G(Xi; �0)0�(�0)]� (Ti; Xi; �0) + op(1):

Under certain regularity conditions, the Uniform Law of Large Numbers (ULLN) holds for all the average

terms above, then by Law of iterated expectation and the de�nition of �(�0); the second summand above

is op(1): Thus the modi�ed sample covariance is free of the impact of parameter estimation uncertainty,

because the replacement of �0 by �̂ does not alter its asymptotic distribution. This feature is used by

Wooldridge (1990) to develop moment based asymptotic �2 tests that are not subject to the impact of

parameter estimation uncertainty.

In the present context, our interest lies in testing whether 1
n

Pn
i=1 Ui(t; �0)

p! 0 for all t. We choose

� (Ti; Xi; �) = Ui(t; �) and � (Xi; �) = 1: However, there are two key di¤erences from Wooldridge�s

(1990) original device. First, we need to check for all t 2 [0; 1] rather than a single or �nitely many points

of t. Second, Wooldridge (1990) assumes that � (Ti; Xi; �) is di¤erentiable with respect to �; whereas

our generalized residual Ui (t; �) is not di¤erentiable with respect to � because it involves the indicator

function. Fortunately, using the expansion in (3:1:1); we can de�ne Gi(t; �) = @
@�F0[F

�1
0 (tjXi; �)jXi]

analogously, and

�̂(t; �) =

"
nX
i=1

1[Ci(�) > t]Gi(t; �)Gi(t; �)
0

#�1 nX
i=1

1[Ci(�) > t]Gi(t; �)

is the OLS estimator of regressing unity on 1[Ci(�) > t]Gi(t; �). Now instead of using M̂n(t; �); we
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consider the modi�ed empirical process

Ĵn (t; �) =
1p
n

nX
i=1

(
1[Vi (�) > t]� (1� t)1[Ci (�) > t]

Ŝc (t; �)

)n
1� 1[Ci(�) > t]Gi (t; �)0 �̂ (t; �)

o
; t 2 [0; 1] :

(3.1.3)

Unlike M̂n(t; �̂), Ĵn(t; �̂) is free of uncertainty impact from parameter estimation asymptotically in the

sense that Ĵn(t; �̂) = Ĵn(t; �0)+ op(1). Of course our test statistic is di¤erent from Wooldridge�s �2 tests

because we have to take care of the �nuisance parameter� t properly to ensure the global power of our

test.

3.2 Test Statistic

To derive the null asymptotic distribution of our test statistic, we impose the following conditions.

Assumption A.4: (a) The conditional cdf F0(tjXi; �) is continuous and strictly increasing in t,

so its inverse function F�10 (�; jXi; �) exists and is well de�ned; (b) F0 (tjXi; �) is twice continuously

di¤erentiable with respect to � 2 � with E sup
t2[0;1]

sup
�2�0

 @
@�F0(tjXi; �)

2 � � for some constant � < 1;

where �0 � f� 2 � :
p
n k� � �0k � �0g and �0 is a bounded constant; (c) The cdf of censoring variable

~Ci; say F ~C (�) ; is continuous.

Assumption A.5: �̂ is an estimator of �0 such that
p
n(�̂ � ��) = Op(1); where �� � p lim �̂, and

�� = �0 under H0.

Assumption A.4 provides regular smoothness and moment conditions on the conditional lifetime dis-

tribution model F0(tjXi; �) of Ti on Xi: Assumption A.5 does not require any speci�c estimation method:

any
p
n consistent estimator of �0 applies. Examples include MLE, approximate MLE, QMLE and GMM.

In particular, we allow but do not require any asymptotically most e¢ cient estimator. Moreover, we

need not know the asymptotic expansion structure of �̂ because �̂ does not a¤ect asymptotic distribution

of the test statistic. These properties greatly simplify the construction and implementation of our test

based on Ĵn(t; �).

Given Assumption A.5, for any given constant " > 0, there exists �0 � �0(") < 1 such that

P (
p
n k� � ��k > �0) < " for n su¢ ciently large. Putting �0 � f� 2 � :

p
n k� � ��k � �0g, we have

�̂ 2 �0 with probability approaching 1 as n!1:

Theorem 2 considers the impact of parameter estimation uncertainty on empirical processes M̂n(t; �̂)

and Ĵn(t; �̂) respectively:

Theorem 2. Suppose Assumptions A.1 -A.5 hold. Then under H0, for all t 2 [0; 1] and � 2 �0;
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where �0 = f� 2 � :
p
n k� � ��k � �0g ; for some constant �0; we have

M̂n(t; �) = M̂n(t; �0)�
1

Sc(t; �)
�g(t; �; �0)

0pn(� � �0) + op(1);

Ĵn(t; �) = Ĵn (t; �0) + op(1);

where �g(t; �; �0) = E
�
1[Ci(�) > t]

@
@�F0[F

�1
0 (tjXi; �)jXi]j�=�0

	
:

Theorem 2 implies that unlike M̂n(t; �̂); parameter estimation uncertainty has no impact on the

asymptotic distribution of Ĵn(t; �̂): Asymptotically the factor 1 � 1[Ci(�) > t]Gi (t; �)
0 �̂ (t; �) removes

the nontrivial uncertainty impact of parameter estimation. Now the derivation of limit distribution of

our test statistic under H0 is no longer complicated by the substitution of parameter estimator �̂ for the

unknown true parameter value �0: Speci�cally one can proceed as if �0 were known and equal to �̂. This

greatly simpli�es the construction and implementation of our test statistic because we need not know the

asymptotic expansion of �̂ and can choose any convenient estimation method that yields a
p
n-consistent

parameter estimator.

We can derive the asymptotic distribution of the modi�ed empirical process Ĵn(t; �̂), as stated in

Theorem 3 below.

Theorem 3. Suppose Assumption A.1 - A.5 hold. Then under H0

Ĵn(t; �0))W (t);

where ) denotes weak convergence, and W (t) is a zero mean Gaussian process with covariance kernel

Cov[W (t);W (s)]

=
(1� t _ s)� (1� t)(1� s)

Sc(t; �0)Sc(s; �0)
Ef1[Ci (�0) > t _ s][1�Gi(t; �0)0�(t; �0)][1�Gi(s; �0)0�(s; �0)]g;

where �(t; �0) = fE (1[Ci (�0) > t]Gi(t; �0)Gi(t; �0)0)g�1Ef1[Ci (�0) > t]Gi(t; �0)g:

With Theorem 2 and 3, and the continuous mapping theorem (e.g., Billingsley 1995), we can construct

many test statistics based on Ĵn(t; �̂): Our primary test statistic is de�ned as follows:

GCV =

Z 1

0
Ĵ2n(t; �̂)dt: (3.2.1)

This can be viewed as a Generalized Cramer-von-Mises (GCV) test.
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We can also de�ne a Generalized Kolmogorov-Smirnov (GKS) test:

GKS = sup
0�t�1

���Ĵn(t; �̂)��� :
However, our simulation studies show that GKS has poor size in �nite sample. For this reason, we focus

on the GCV test in this paper.

The following corollary gives the asymptotic distribution of GCV .

Corollary 1. Suppose Assumptions A.1 -A.5 hold. Then under H0; we have

GCV
d�!
Z 1

0
W 2 (t) dt;

where d�! denotes convergence in distribution.

Our GCV reduces to the conventional Cramer-von-Mises statistic (but with the impact of parameter

estimation uncertainty properly removed) when there is no censoring. In this special case we have

1[Ci(�̂) > t] = 1 and 1[Vi(�̂) > t] = 1[Ti(�̂) > t]: It follows that GCV becomes the following form:

GCV =

Z 1

0

 
1p
n

nX
i=1

n
1[Ti(�̂) > t]� (1� t)

oh
1�Gi(t; �̂)0�̂(t; �̂)

i!2
dt;

where �̂(t; �̂) =
�Pn

i=1Gi(t; �̂)Gi(t; �̂)
0
�Pn

i=1Gi(t; �̂):

However, it worths noting that the free-of-parameter-impact property does not come "freely". Speci�-

cally, M̂n(t; �̂) and Ĵn(t; �̂) are not always asymptotically equivalent in the sense that M̂n(t; �̂)�Ĵn(t; �̂)
p!

0 under the null. The asymptotic equivalence between M̂n(t; �̂) and Ĵn(t; �̂) occurs when

1p
n

nX
i=1

(
1[Vi(�̂) > t]� (1� t)1[Ci(�̂) > t]

Ŝc(t; �̂)

)
1[Ci(�̂) > t]Gi(t; �̂)

0�̂(t; �̂) = op (1) :

When this condition fails, the tests based on M̂n(t; �̂) and Ĵn(t; �̂) may test misspeci�cation in di¤erent

directions. This is the price we have to pay by using Ĵn(t; �̂):

Theorem 3 implies that our test statistic GCV is not asymptotic distribution free (ADF). Be-

fore we move on to discuss the resampling method we use for critical values, we �rst consider how

we can potentially get an ADF test in this setting. To derive an ADF test in this setting, we can

use the so-called Khmaladze transformation on the appropriate empirical process (Khmaladze 1981,

1993). This transformation has been used by Bai (2003) and Koenker and Xiao (2002) in economet-
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rics. To illustrate the essence of Khmaladzation, we consider the simple case without censoring. De�ne

#n(t; �) =
p
n
�
1
n

P
i 1[Ti(�) � t]� t

	
= �M̂n(t; �): The limiting distribution of #n(t; �̂) is some zero

mean Gaussian process v̂: Khmaladze�s transformation (Khmaladzation hereafter) is performed through

three steps: �rst, we need to transform process v̂ to its innovation martingale ŵ through the Doob-Meyer

transformation (see for example, Fleming and Harrington, 1991);8 second, ŵ is then transformed to a

standard Wiener process w (a much easier step than the �rst one); �nally, in the resulting transfor-

mation from v̂ to w, substitute #n (t; �) for v̂: In the uncensored case, de�ne g0(t; �) = @
@t�g(t; �), then

Khmaladzation generates a process

wn (t; �) = #n (t; �)�
Z t

0

 
g0 (s; �)T

�Z 1

s
g0 (� ; �) g0(� ; �)Td�

��1 Z 1

s
g0(� ; �)d#n(� ; �)

!
ds

which has a standard Wiener process limiting distribution. Intuitively, Wooldridge�s transformation

is a point transformation or reweighting of each observation to purge parameter estimation uncertainty

impact, while Khmaladzation is the in�nite dimension transformation.9 As a result, even for this simplest

case, we can see that Khmaladzation requires the calculation of stochastic integral, which inevitably

imposes much heavier computational burden. When censoring is present, the transformation would

involve a composition of two transformations, because #n(t; �0) is not the familiar Brownian bridge to

start with. Nikabadze and Stute (1997) derive the Khmaladzation formula in the situation when lifetimes

follow the same unconditional distribution and random censoring is present. As expected, Khmaladzation

in this case is much more intricate, and this mathematical elegancy does not generate easily computable

test statistics. Moreover, a necessary and su¢ cient condition for the existence of innovation process ŵ in

step 1, is that the functions 1; g01 (t; �) ; g
0
2 (t; �) ; :::; g

0
k (t; �) are linearly independent in the neighborhood

of 1:10 Although Tsigroshvili (1998) shows that this condition can be relaxed, a generalized inverse is

inevitable whenever this condition fails. On the contrary, to compute our test, we only need to perform

the convenient OLS regression of 1 on 1[Ci(�̂) > t]Gi(t; �̂).

8 In this case, the innovation martingale is some Gaussian process with independent increments (Khmaladze 1981).
9We want to point out that, Khmaladzation also incurs some loss of asymptotic power since the transformed process is

not always asymptotically equivalent to the original process. The cost is in some sense unavoidable in order to derive a test
statistic free of parameter estimation uncertainty impact.
10This integer k is the dimension of vector g0(t; �):
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4 Resampling Method For Critical Values

The asymptotic distribution of GCV is not distribution-free, since it depends on �0 and F0(�j�; �): As a

result, asymptotic critical values for GCV cannot be tabulated. We now propose a simple resampling

method that can easily generate asymptotically valid critical values for the proposed test statistic.

We �rst describe our resampling procedure:

(i) Simulate B i:i:d: U [0; 1] samples, each with size n: The bth i:i:d: U [0; 1] sample is denoted as

fT �ibg
n
i=1 for b = 1; ::; B:

(ii) Compute the bth resample test statistic for GCV , using fT �ibg
n
i=1 and the original observed data

fXi; ~Cigni=1: This resample test statistic is de�ned as follows:

GCV �b =

Z 1

0

 
1p
n

nX
i=1

(
1[Ci(�̂) > t]f1 [T �ib > t]� (1� t)g

Ŝc(t; �̂)

)h
1� 1[Ci(�̂) > t]Gi(t; �̂)0�̂(t; �̂)

i!2
dt:

(4.1)

(iii) Repeat steps (i) and (ii) for b = 1; :::; B; and obtain a collection of resample test statistics

fGCV �b gBb=1.

(iv) The sample of fGCV �b gBb=1 mimics random draws from the distribution of GCV under the null

hypothesis H0: Hence, its (1� �) th sample percentile yields the critical value for GCV at a prespeci�ed

signi�cance level � 2 (0; 1): This is asymptotically valid if B !1 and n!1, as is justi�ed in Theorem

4 below.

Theorem 4. Suppose Assumption A.1-A.5 and H0 hold. Then for any b 2 f1; 2; :::; Bg; GCV �b
d�!R 1

0 W
2 (t) dt; where W (t) is de�ned in Theorem 3.

Note that in resampling, the covariates fXig and censoring times f ~Cig are the same as in the observed

sample. This is similar to Andrews�(1997) parametric bootstrap. But our resampling method is much

more computationally simpler for reasons stated in section 3.1.1. Moreover, since Andrews� (1997)

CK statistic is based on the di¤erence between an empirical distribution function and a semiparametric

distribution function, his parametric bootstrapping procedure simulates the original dependent variable

~T �i using a parametric conditional distribution function F0(tjXi; �̂) and model re-estimation is needed for

each resample data to account for the impact of parameter estimation uncertainty. In contrast, thanks

to the use of the probability integral transform, we simply generate the transformed lifetimes T �i from a

U [0; 1] distribution, which is model-free. In addition, we need not re-estimate model parameters in any

iteration. As a result, our resampling method is computationally simple.
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5 Extensions

Now we will discuss the extensions of our test to several interesting and important scenarios.

5.1 Extension to Duration Models with Unobserved Heterogeneity

Since Lancaster (1979), it has been recognized in the literature that it is often necessary to account

for population variations in both observed and unobserved variables (Heckman and Singer 1984b), the

latter known as unobserved heterogeneity in duration analysis. Failure to adequately control for popu-

lation heterogeneity (observed and unobserved) can produce severe bias in structural estimates as well

as inferences of duration models. Existence of unobserved heterogeneity is a special case of general

model misspeci�cation, and our proposed test developed earlier can detect it. Our interest here is the

particular parametric form of the lifetime distribution conditional on both observed and unobserved co-

variates. Heckman and Singer (1984b) show that empirical parameter estimates of the lifetime duration

model conditional on all covariates (both observed and unobserved) are rather sensitive to the distribu-

tion speci�cation of the unobservable. However, economic theories rarely suggest a concrete functional

form for the unobserved heterogeneity distribution. Estimation methods not specifying the distribution

of unobserved heterogeneity have been proposed in the literature (Chesher 1984, Kiefer 1984, Lancaster

1985, and recently, Hausman and Woutersen 2005). Similarly, it will be highly desirable to develop a test

for duration models with unobserved heterogeneity that does not assume an unobserved heterogeneity

distribution or is robust to any possible misspeci�cation of an unobserved heterogeneity. We now propose

such a test.

Assumption A.3*: f(Xi; �i; ~Ti) : i > 1g is an i:i:d sequence with unknown conditional distribution

function F (�jXi; �i) of ~Ti given Xi and �i, where the fXig are observable covariates while the f�ig are

unobservable random heterogeneities.

Assumption A.4*: H(�) is a prespeci�ed cdf:

In practice, the popular choice of the Gamma distribution, or more generally, the exponential family

distribution is mainly based on tractability and computational e¢ ciency (Heckman and Singer 1984a,

1984b), since all functions of interest have simple explicit expressions in this case (Lancaster, 1992).

Recently Abbring and Van Den Berg (2007) prove that in a large class of hazard models with proportional

unobserved heterogeneity, the distribution of the heterogeneity converges to a gamma distribution often

at a rapid rate. However, it should be emphasized that the prespeci�ed cdf H(�) does not have to be

the true distribution function of �; so our test below is robust to misspeci�cation of the distribution of
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omitted heterogeneity �i:

Our hypotheses of interest are:

H�0 : F (�jXi; �i) = F0(�jXi; �i; �0) for some unknown �0 2 � vesus

H�A : H�0 is not true.

To extend the test developed earlier, we de�ne

Ti (�j�) = F0( ~TijXi; �; �);

Ci(�j�) = F0( ~CijXi; �; �);

Vi(�j�) = F0( ~VijXi; �; �):

Under H�0; we have Ti(�0j�i) � i:i:d:U [0; 1]; which implies that Ef1[Ti(�0j�i) > tjXi; �i] = 1� t: Corre-

spondingly, we have Z
�
Ef1[Ti(�0j�) > t]jXi; �gdH(�) = 1� t:

We can exchange the order of integral and expectation and obtain

E

Z
�
1[Ti(�0j�) > t]dH(�) = 1� t:

This suggests the format of our empirical survivor function with complete observations as follows:

ŜT (t; �̂) =
1

n

nX
i=1

Z
�
1[Ti(�̂j�) > t]dH(�):

When there are censored observations, the survivor function becomes

ŜT (t; �̂) =
1
n

Pn
i=1

R
� 1[Vi(�̂j�) > t]dH(�)

1
n

Pn
i=1

R
� 1[Ci(�̂j�) > t]dH(�)

:

Then our extended GCV test can be de�ned as follows:

GCV � =

Z 1

0

����� 1pn
nX
i=1

(R
�f1[Vi(�̂j�) > t]� (1� t)1[Ci(�̂j�) > t]gdH(�)

1
n

Pn
i=1

R
� 1[Ci(�̂j�) > t]dH(�)

)n
1�G�i (t; �̂)0�̂

�
(t; �̂)

o�����
2

dt;

(5.1)
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where

G�i (t; �) =

Z
�
1[Ci(�̂j�) > t]

@

@�
F0[F

�1
0 (tjXi; �; �)jXi; �]dH(�);

�̂
�
(t; �) =

"
nX
i=1

G�i (t; �)G
�
i (t; �)

0

#�1 nX
i=1

G�i (t; �):

In practice, given the result of Abbring and Van Den Berg (2007), one can use Gamma distribution for

omitted heterogeneity in the estimation procedure without worrying that the parameter estimates are

too sensitive to the speci�cation of unobservable heterogeneity But the choice of H(�) in the testing

procedure is rather �exible due to Assumption A.4* and how we construct GCV �. Such �exibility makes

our test robust to misspeci�ed omitted heterogeneity and easily extends its applicability to this often

encountered scenario.

5.2 Extension to Duration Models with Competing Risks

Competing risk models arise when failure arises in di¤erent ways or for di¤erent reasons. For example,

an unemployment spell can end with a new job, or a recall from previous job, or withdrawal from the

labor force (Kiefer 1988, Lancaster 1992). In statistics, there is a well known nonidenti�cation theorem

proved by Cox and Tsiatis (Kalb�eisch and Prentice 1980, Lawless 2003), which states that �for any

joint distribution of the latent failure times there exists a joint distribution with independent failure

times which gives the same distribution of the identi�ed minimum�, and it has �led much empirical

work on multistate duration models to be conducted within an independent risks paradigm�(Heckman

and Honore 1989). However, this theorem applies to settings where covariates are absent. In social

science settings where covariates are more common than not, some researchers have shown identi�able

results under certain conditions (Han and Hausman 1986, Heckman and Honore 1989). Nevertheless,

independent risks remain popular in empirical studies (e.g., Katz 1986, Katz and Meyer 1990, Idson and

Valletta 1996, Wheelock and Wilson 2000). This is because on one hand, even though interdependent

risks are more plausible, there are some evidences that the independence hypothesis cannot be rejected

by data (Han and Hausman 1990, Fallick 1993); on the other hand, identi�cation might be demanding

in terms of the amount of data required. Given this, we restrict our attention to independent competing

risks in this section.

Assumption A.3**: There are M types of causes for a failure on individual i. Let ~Tqi be the type

q latent failure time and let Xi be observable covariates for individual i. The sample f(Xi; ~T1i; :::; ~TMi) :

22



i > 1g is an i:i:d sequence with unknown conditional distribution functions F q(�jXi) of ~Tqi given Xi; for

q = 1; :::;M . The failure times f ~Tqi; q = 1; :::;Mg and censoring times f ~Cig are mutually independent of

each other given Xi:

Under this conditional independent competing risk framework, one may be interested in testing para-

metric speci�cation for one speci�c type of failure, say type m 2 f1; 2; :::;Mg. That is, whether the

failure of type m follows a parametric conditional distribution speci�cation Fm(�jXi; �): Formally, our

hypotheses of interest are:

H��0 : Fm(�jXi) = Fm0 (�jXi; �0) for some unknown �0 2 � vesus

H��A : H��0 is not true.

Here, the failure times of types 1; 2; :::;m� 1;m+1; :::;M are treated as the censoring times for type

m: To apply our method developed earlier, we need to transform the original data by the conditional

parametric probability distribution model Fm0 (�jXi; �) of type m under H��0 : De�ne

V mi (�) = min [Tm1i (�); :::; T
m
Mi(�); Ci(�)] ;

Cmi (�) = min[Tm1i (�); :::; T
m
(m�1)i(�); T

m
(m+1)i(�); :::; T

m
Mi(�); Ci(�)];

where Tmqi (�) = Fm0 (
~TqijXi; �); for q = 1; :::;M and Ci(�) = Fm0 (

~CijXi; �). Also de�ne the sample

survivor function Ŝcm(t; �) = 1
n

Pn
i=1 1[C

m
i (�) > t]: Then our GCV test can be de�ned as follows:

GCV m =

Z 1

0

����� 1pn
nX
i=1

(
1[V mi (�̂) > t]� (1� t)1[Cmi (�̂) > t]

Ŝcm(t; �̂)

)h
1� 1[Cmi (�̂) > t]Gmi (t; �̂)0�̂

m
(t; �̂)

i�����
2

dt;

(5.2)

where

Gmi (t; �) =
@

@�
Fm0 [F

m�1
0 (tjXi; �)jXi; �];

�̂
m
(t; �) =

"
nX
i=1

1[Cmi (�) > t]G
m
i (t; �)G

m
i (t; �)

0

#�1 nX
i=1

1[Cmi (�) > t]G
m
i (t; �):

6 Finite Sample Performance

We now investigate the �nite sample performance of the GCV test, in comparison with three existing

popular tests, namely RM , LGP , and the LM test for heterogeneity, with application to testing the null

hypothesis of a conditional exponential distributed duration with censored observations. Prieger (2000)

calculates the explicit forms of RM , LGP and LM tests for this case, which we follow here. Since the
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�rst few moments are usually of special interest, we choose the second and third moment conditions to

perform the moment tests.11

6.1 Simulation Design

6.1.1 Size

To investigate sizes of tests, we consider the following Data Generating Processes (hereafter DGP):

� DGP1:
~TijXi � Exponential distribution with pdf f(tjXi) = �i exp(��it);

where �i = exp[�(X1i + 2X2i)]; Xi = (X1i;X2i)0; X1i � i:i:d:N(0; 1); X2i � i:i:d:N(0; 1), and X1i and X2i
are mutually independent.

We evaluate the sizes of tests under di¤erent degrees of random censoring, checking whether censoring

distorts sizes, and if so, to what extent. For simplicity, we use an independent random censoring scheme,

Ci � Exponential Distribution with di¤erent means to generate desirable censoring percentages: 0%,

around 10% and around 20% respectively. Under the null hypothesis of a conditional exponential

distribution, we estimate a null conditional exponential distributed duration model via MLE and calculate

test statistics with the parameter estimates. ForGCV , we use the resampling method described in Section

4 to obtain critical values, with the resampling iteration number B = 100. For RM , LGP and LM

tests, we use both asymptotic critical values and bootstrap critical values. The bootstrap for the latter

is conducted as follows. First, we simulate B (B = 100) bootstrap samples, each of size n. In the bth

sample, covariates and censoring time are the same as in the real data, i:e:; (Xib; ~Cib) = (Xi; ~Ci); lifetime

~Tib is simulated using the null distribution F0(� j Xi; �̂); where �̂ is the parameter estimate based on the

real data. Then we estimate the null model using the bootstrap sample ( ~Tib; Xi; ~Ci) and compute test

statistics for the bth bootstrap sample. The sample fRMbg; fLGPbg; fLMbg mimic random draws from

the distributions of RM;LGP and LM under the null hypothesis. Hence their (1��)th sample percentiles

yield the critical values of RM;LGP and LM respectively at signi�cance level �: Because the bootstrap

takes into account the impact of parameter estimate, moment tests using bootstrap critical values can

compare fairly with our test. Five di¤erent sample sizes are considered: n = 100; 200; 300; 400; 500: The

number of Monte Carlo trials in all cases is 1000.
11The �rst moment restriction is automatically satis�ed from the likelihood equations (Kiefer 1988, Lancaster 1992, Prieger

2000).
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6.1.2 Power

We also examine power of tests for neglected heterogeneity and misspeci�cation of duration distribution

respectively. The DGPs are as follows:

� DGP2 (Omitted Heterogeneity):

~TijXi � exponential distribution with pdf f(tjXi) = �i exp(��it);

where �i = exp[�(X1i+2X2i+X2
1i)]; Xi = (X1i; X2i)

0; X1i � i:i:d:U [0; 1]; X2i � i:i:d:U [0; 1] and X1i and

X2i are mutually independent.

� DGP3 (Misspeci�cation of Duration Density):

~TijXi � lognormal distribution with pdf f(tjXi) =
1

(2�)1=2�t
exp

"
�1
2

�
log t� �i

�

�2#
;

where �i = exp[�(X1i + 2X2i)]; Xi = (X1i; X2i); X1i � i:i:d:N(0; 1); X2i � i:i:d:N(0; 1); � = 0:8; and X1i
and X2i are mutually independent.

In both cases, we use MLE to estimate the null conditional exponential distributed duration model:

~TijXi � exponential distribution with pdf f(tjXi; �) = �i exp(��it); ]

where �i = exp[�(�1X1i + �2X2i)] and � = (�1; �2)0:

DGP2 is designed for power comparison among all tests against omitted heterogeneity. In this

scenario, hypotheses are nested, so all tests are applicable. We use both empirical critical values and

bootstrap/resampling critical values. To obtain the empirical critical values, we �rst generate fXig ; f ~Cig

according to the design in DGP2, and f ~Tig according to the null model, then we use this data to estimate

the null duration model, and use the parameter estimates and the data to compute test statistics. After

we repeat the above procedure for 1000 times, we can rank these 1000 test statistics, and the 1000(1��)

percentile gives the corresponding Empirical Critical Value (ECV) at signi�cance level �:We then generate

fXig ; f ~Cig and f ~Tig under DGP2; estimate the null model with the data, and compute test statistics

with the parameter estimates. The decision rule is to compare these test statistics with the corresponding

ECV. Empirical critical values provide a fair comparison of powers among di¤erent tests. However,

empirical critical values are not applicable in practice, because the DGPs for fXi; ~Cig are unknown.

Therefore we also conduct power studies using bootstrap critical values for RM , LGP and LM tests and
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resampling critical values for GCV , which are always feasible in practice.

Under DGP3, there exists misspeci�cation in the conditional duration density. In this case, the

LM test for heterogeneity is no longer applicable because the design only accommodates the omitted

heterogeneity cases. Therefore we only compare the power of LGP and RM tests with that of GCV ,

using both ECV and bootstrap/resampling critical values.

For both DGP2 and DGP3; we are interested in studying the impact of censoring on power of tests.

Di¤erent degrees of censoring are generated by the same method as in the size study. In all cases, the

bootstrap and resampling iteration numbers B = 100, and the number of Monte Carlo trials is equal to

500. Since DGP2 is designed as a close alternative to the null hypothesis (with the omitted squared term

of X2
1i; where X1i � i:i:d:U [0; 1]), we consider the sample size n = 100; 200; 300; 500; 2000: For DGP3;

we use the sample size n = 100; 200; 300; 400; 500:

6.2 Monte Carlo Evidences

Table I reports the empirical rejection rates of the tests under H0 at the 0:05 and 0:10 signi�cance

levels. For the GCV test, its empirical size is close to its nominal level even for the sample size n

as small as 100. It is also robust to di¤erent degrees of censoring. On the other hand, none of the

moment tests give reasonable sizes when asymptotic critical values are used. Speci�cally, the RM test

excessively overrejects at both levels, although there is some tendency that its empirical null rejection

probabilities get closer to its nominal levels gradually as the sample size n increases. This is due to the

fact that RM converges very slowly (Prieger 2000). Not surprisingly, LM underrejects in all cases since

the theoretical information matrices are not available (Jaggia 1997); When there is no censoring, LGP

underrejects, although not dramatically for all sample sizes, but it seems that its empirical sizes converge

to its nominal levels as the sample size increases. However, censoring vastly distorts the sizes of the LGP

test: in fact, the empirical null rejection probabilities are 0 everywhere, implying invalid sizes. This is

because whenever there is censoring, the modi�ed Laguerre polynomials are no longer orthogonal with

respect to the censored exponential distribution (Prieger 2000), discounting the validity of the test. The

last six columns of Table I report the empirical sizes of RM , LGP and LM tests using bootstrap critical

values. Once bootstrap critical values are adopted, sizes are noticeably improved for all moment tests

at all sample sizes and censoring percentages, as explained by Horowitz (1994). In particular, for LGP

and LM tests, empirical sizes are close to nominal levels, while the RM test still shows under rejection

in most cases. However, this is achieved at the price of computation burden. On average, it takes at

least 3 times longer to run a bootstrap moment test than to run our test through resampling.

26



Table II reports the powers of all tests at the 0:05 and 0:10 signi�cance levels under DGP2, using

empirical critical values. Apparently the LGP and LM tests for heterogeneity have little power detecting

this close alternative and large sample sizes do not boost their powers.12 The RM test demonstrates a

slow power improvement with increasing sample sizes. At the largest sample size n = 2000 we consider,

the empirical power for the RM test is roughly around 0:3 at the 0:05 level and 0:5 at the 0:10 level . Our

GCV test is the most powerful for detecting this omitted heterogeneity. Its power improves signi�cantly

as the sample size increases. For example, for n = 2000; and under the uncensored case, the rejection

rates for GCV are 0:696 and 0:796 at the 0:05 and 0:10 levels respectively.

Table III reports the powers of all tests at the 0:05 and 0:10 levels under DGP2, using boot-

strap/resampling critical values. The power pattern is similar to the one based on the empirical critical

values in Table II.

Table IV reports the empirical powers of GCV; LGP and RM tests at the 0:05 and 0:10 levels under

DGP3, using empirical critical values. In this scenario, the LM test for heterogeneity is not applicable.

GCV again has the highest power for all sample sizes and censoring levels. GCV achieves unit power

when n � 400 at all censoring levels. The LGP test also has good power. As the sample size n

increases, its power approaches unit gradually. In comparison, the RM test is the least powerful for

detecting this density misspeci�cation. In all cases, its power never exceeds 0:14 and there is no evidence

that increasing the sample size improves its power.

Table V reports the powers under DGP3 using bootstrap/resampling critical values. Again, the

power pattern is similar to that in Table IV.

Overall, our GCV test has a great �nite sample performance. The empirical sizes of GCV are close

to its nominal levels, and it has the highest power for two alternatives considered. In comparison, the

popular moment tests, LGP , LM for heterogeneity and RM tests have invalid sizes when asymptotic

critical values are used. Their sizes are corrected and become reasonable when bootstrap critical values

are used, but the corresponding computing programs take at least 3 times longer to run. In terms of

power studies, the LGP test has good power against the misspeci�ed density, while no power against

the neglected heterogeneity. In addition, once censoring is involved, the modi�ed polynomials are no

12Moreover, the calculation of moment conditions for LGP and LM is very tedious. For example, the 2nd and 3rd moments
for LGP test are:
�2 =

1
n

P
i 0:5["̂

2
i � 4"̂i + 2 + 2(1� �i)("̂i � 1)]

�3 =
1
n

P
i
1
6
[�"̂3i + 9"̂2i � 18"̂i + 6 + 3(1� �i)(�"̂2i + 4"̂i � 2)];

And the 2nd and 3rd moments for LM test are:
s2 =

1
n

P
i 0:5("̂

2
i � 2�i"̂i)

s3 =
1
n

P
i�

1
6
("̂3i � 3�i"̂2i );

where "̂i = ~Vi exp(�X 0
i�̂) for our null conditional exponential duration model.
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longer orthogonal with respect to null weighting function (Prieger 2000), implying that the advantage

of easy computation for LGP is lost in censoring cases. The LM test for heterogeneity fails to detect

the omitted heterogeneity. Moreover, the applicability of both LGP and LM tests is limited: the LM

for heterogeneity does not go beyond omitted heterogeneity testing, and the LGP test does not apply to

any non-nested hypotheses. The RM test, on the other hand, has the applicability as wide as our GCV

test. However, not surprisingly, it has limited power for certain alternatives, like the misspeci�ed density

in DGP3. This illustrates the limit of moment based tests.

7 Conclusion

Duration models with censoring have continuously attracted attentions in economics, �nance and other

�elds. Their increasing popularity has been accompanied by the potential increase in �model risk�, which

can only be reduced by model checking. In this paper, we have proposed a generalized residual based

goodness-of-�t test, which has a number of signi�cant advantages over the existing approaches. Firstly,

the existing duration literature only develops moment-based tests, while our approach takes a more

comprehensive approach by inspecting the conditional duration distribution. Secondly, some existing

methods fail to incorporate the censoring information, while our test incorporates all available information

from complete and censored observations. This is achieved through a novel simple survivor function that

is applicable to both censored and uncensored observations. Lastly, our approach does not require

any speci�c estimation method and parameter estimation uncertainty does not a¤ect the asymptotic

distribution of the proposed test statistic, thanks to adopting a purging device of Wooldridge�s (1990) type.

We propose a simple resampling method to obtain the critical values of our test, and discuss the extension

to accommodate unobserved heterogeneity and competing risks. The �nite sample performance of the

proposed test is assessed via simulation studies in comparison with a number of popular existing tests,

and our test has a nice �nite sample performance (both in terms of size and power) and computational

advantage.
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Table I: Empirical Size 
 

GCV LM2, acv LGP2, acv RM2, acv LM2, bp LGP2, bp RM2, bp  
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

n=  100               
Censor=0% 0.058 0.106 0.022 0.034 0.025 0.052 0.407 0.459 0.052 0.11 0.057 0.112 0.07 0.124
Censor=11.49% 0.054 0.112 0.013 0.02 0.00 0.00 0.424 0.474 0.038 0.087 0.053 0.096 0.038 0.098
Censor=20.74% 0.058 0.109 0.017 0.02 0.00 0.00 0.388 0.441 0.059 0.085 0.073 0.126 0.05 0.096
n=  200               
Censor=0% 0.06 0.127 0.02 0.037 0.041 0.07 0.298 0.351 0.053 0.108 0.057 0.117 0.03 0.064
Censor=11.61% 0.063 0.116 0.022 0.03 0.00 0.00 0.287 0.358 0.048 0.092 0.054 0.109 0.06 0.082
Censor=20.85% 0.059 0.104 0.018 0.026 0.00 0.00 0.273 0.332 0.046 0.07 0.054 0.101 0.042 0.088
n=  300               
Censor=0% 0.066 0.122 0.028 0.04 0.043 0.076 0.239 0.296 0.063 0.122 0.064 0.113 0.04 0.082
Censor=11.61% 0.054 0.10 0.017 0.03 0.00 0.00 0.255 0.309 0.062 0.105 0.07 0.12 0.056 0.104
Censor=20.81% 0.053 0.106 0.019 0.028 0.00 0.00 0.245 0.307 0.04 0.066 0.065 0.117 0.036 0.07 
n=  400               
Censor=0% 0.069 0.121 0.027 0.035 0.042 0.064 0.227 0.282 0.069 0.115 0.067 0.115 0.016 0.05 
Censor=11.56% 0.044 0.098 0.023 0.033 0.00 0.00 0.211 0.273 0.048 0.086 0.069 0.124 0.06 0.102
Censor=20.78% 0.058 0.102 0.022 0.028 0.00 0.00 0.221 0.271 0.032 0.069 0.058 0.116 0.042 0.082
n=  500               
Censor=0% 0.065 0.106 0.022 0.037 0.06 0.086 0.195 0.26 0.062 0.106 0.053 0.105 0.008 0.044
Censor=11.57% 0.057 0.107 0.022 0.034 0.00 0.00 0.189 0.25 0.057 0.107 0.062 0.106 0.04 0.068
Censor=20.86% 0.055 0.096 0.015 0.025 0.00 0.00 0.207 0.268 0.034 0.067 0.054 0.105 0.03 0.068
 

Note: Iteration number k=1000, Bootstrap Iteration number B=100, Sample size n=100, 200, 300, 400, 500 
     GCV—Generalized Cramer-von Mise Statistic   
     LM 2 – LM test for Heterogeneity, 2nd and 3rd moments used 
     LGP 2 – Laguerre-based test, 2nd and 3rd moments used 
     RM2 – Raw Moment test, 2nd and 3rd moments used 
     acv: asymptotic critical value;  bp: bootstrap critical values 
 
DGP: X1～N(0,1); X2～N(0,1) 
          μi=exp[-(x1i+2x2i)] 
          Exponential pdf for lifetime Ti: μiexp(-μit). 



Table II: Empirical Power over Neglected Heterogeneity (ECV) 
 

GCV, ecv LM 2, ecv LGP 2, ecv RM 2, ecv  
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

n=100         
Censor=0% 0.078 0.126 0 0 0.048 0.084 0.07 0.126 
Censor=10.43% 0.06 0.124 0.036 0.072 0.044 0.086 0.052 0.086 
Censor=20.10% 0.094 0.15 0.03 0.054 0.028 0.072 0.038 0.1 
n=200         
Censor=0% 0.082 0.166 0 0 0.052 0.09 0.04 0.092 
Censor=10.31% 0.134 0.24 0.018 0.032 0.042 0.094 0.064 0.11 
Censor=20.14% 0.108 0.164 0.022 0.044 0.036 0.068 0.056 0.106 
n=300         
Censor=0% 0.2 0.286 0 0 0.044 0.1 0.036 0.092 
Censor=10.4% 0.134 0.232 0.014 0.046 0.034 0.09 0.052 0.132 
Censor=20.02% 0.14 0.238 0.036 0.066 0.032 0.078 0.056 0.106 
n=500         
Censor=0% 0.214 0.322 0 0 0.08 0.116 0.058 0.146 
Censor=10.35% 0.178 0.31 0.018 0.062 0.038 0.1 0.054 0.104 
Censor=20.09% 0.186 0.31 0.022 0.062 0.032 0.05 0.082 0.174 
n=2000         
Censor=0% 0.696 0.796 0 0 0.066 0.118 0.292 0.478 
Censor=10.33% 0.608 0.732 0.02 0.06 0.032 0.06 0.316 0.486 
Censor=20.02% 0.532 0.662 0.034 0.078 0.032 0.05 0.298 0.486 

 
Note: Iteration number k=500, ECV Replication number B=1000, Sample size n=100, 200, 300, 500, 2000. ecv: empirical critical value. 
Simulation DGP:  

X1～U[0,1]; X2～U[0,1] 
μi=exp[-(x1i+2x2i+x1i

2)] 
     Exponential pdf for lifetime Ti: μiexp(-μit). 
  
     Model (H0): 

λi=exp[-(α1x1i+α2x2i)] 
     Exponential pdf for lifetime yi: λiexp(-λit). 



Table III: Empirical Power over Neglected Heterogeneity (Bootstrap) 
 

GCV LM 2, bp LGP 2, bp RM 2, bp  
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

n=100         
Censor=0% 0.08 0.164 0.056 0.102 0.058 0.102 0.062 0.114 
Censor=10.24% 0.084 0.136 0.052 0.098 0.058 0.108 0.068 0.1 
Censor=20.08% 0.07 0.138 0.048 0.08 0.062 0.088 0.048 0.108 
n=200         
Censor=0% 0.136 0.22 0.052 0.114 0.05 0.12 0.072 0.112 
Censor=10.41% 0.1 0.158 0.042 0.106 0.03 0.078 0.056 0.112 
Censor=20.24% 0.1 0.14 0.024 0.076 0.032 0.062 0.078 0.126 
n=300         
Censor=0% 0.194 0.274 0.044 0.088 0.048 0.086 0.076 0.15 
Censor=10.2% 0.158 0.246 0.05 0.088 0.056 0.09 0.066 0.116 
Censor=20.16% 0.142 0.2 0.036 0.084 0.024 0.064 0.054 0.118 
n=500         
Censor=0% 0.254 0.368 0.074 0.108 0.08 0.124 0.064 0.144 
Censor=10.35% 0.186 0.274 0.06 0.116 0.04 0.09 0.08 0.164 
Censor=19.96% 0.166 0.256 0.034 0.08 0.026 0.068 0.064 0.136 
n=2000         
Censor=0% 0.658 0.758 0.078 0.126 0.096 0.138 0.314 0.468 
Censor=10.43% 0.594 0.72 0.072 0.134 0.038 0.064 0.276 0.452 
Censor=20.08% 0.588 0.696 0.056 0.1 0.026 0.05 0.218 0.386 

 
Note: Iteration number k=500, Bootstrap Iteration number B=100, Sample size n=100, 200, 300, 400, 500 
Simulation DGP:  

X1～U[0,1]; X2～U[0,1] 
μi= exp[-(x1i+2x2i+x1i

2)] 
     Exponential pdf for lifetime Ti: μiexp(-μit). 
 
     Model (H0):  

λi=exp[-(α1x1i+α2x2i)] 
     Exponential pdf for lifetime yi: λiexp(-λit). 



Table IV: Empirical Power over Misspecification in Density (ECV) 
 

GCV, ecv LM 2, ecv LGP 2, ecv RM 2, ecv  
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

n=100          
Censor=0% 0.522 0.772 N/A N/A 0.44 0.574 0.1 0.162 
Censor=10.27%  0.406 0.73 N/A N/A 0.452 0.622 0.114 0.162 
Censor=% 0.452 0.71 N/A N/A 0.54 0.668 0.084 0.136 
n=200         
Censor=0% 0.972 0.996 N/A N/A 0.686 0.828 0.07 0.1 
Censor=10.15% 0.952 0.994 N/A N/A 0.752 0.852 0.07 0.114 
Censor=% 0.94 0.984 N/A N/A 0.752 0.852 0.088 0.132 
n=300         
Censor=0% 1 1 N/A N/A 0.858 0.952 0.042 0.07 
Censor=10.14%  0.996 0.996 N/A N/A 0.88 0.958 0.056 0.088 
Censor=% 0.996 1 N/A N/A 0.902 0.944 0.068 0.11 
n=400         
Censor=0% 1 1 N/A N/A 0.952 0.99 0.046 0.126 
Censor=10.19% 1 1 N/A N/A 0.98 0.992 0.036 0.094 
Censor=% 1 1 N/A N/A 0.98 0.996 0.062 0.096 
n=500         
Censor=0% 1 1 N/A N/A 0.994 0.998 0.056 0.136 
Censor=10.1% 1 1 N/A N/A 0.984 0.996 0.062 0.134 
Censor=% 1 1 N/A N/A 0.988 1 0.03 0.09 

 
Note: Iteration number k=500, ECV Replication number B=1000, Sample size n=100, 200, 300, 400, 500 
Simulation DGP: 

X1～N(0,1); X2～N(0,1) 
     μi=x1i+2x2i
     Lognormal pdf for lifetime Ti: (2π)-0.5(σt)-1exp[-(logt-μi)2/(2σ2)],σ =0.8. 
 
Model (H0): 

λi=exp[-(α1x1i+α2x2i)] 
     Exponential pdf for lifetime yi: λiexp(-λit). 



Table V: Empirical Power over Misspecification in Density (Bootstrap) 
 

GCV LM 2, bp LGP 2, bp RM 2, bp  
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

n  =100         
Censor=0% 0.568 0.812 N/A N/A 0.448 0.602 0.118 0.176 
Censor=10.13%  0.52 0.756 N/A N/A 0.462 0.604 0.124 0.172 
Censor=21.69% 0.44 0.668 N/A N/A 0.506 0.648 0.088 0.146 
n=200         
Censor=0% 0.97 1 N/A N/A 0.698 0.846 0.068 0.112 
Censor=10.14%  0.964 0.992 N/A N/A 0.738 0.856 0.072 0.116 
Censor=21.94% 0.982 0.986 N/A N/A 0.784 0.89 0.058 0.082 
n=300         
Censor=0% 1 1 N/A N/A 0.85 0.938 0.056 0.094 
Censor=10.32%  0.998 1 N/A N/A 0.908 0.956 0.042 0.08 
Censor=21.7% 0.996 0.998 N/A N/A 0.95 0.98 0.058 0.086 
n=400         
Censor=0% 1 1 N/A N/A 0.95 0.988 0.042 0.11 
Censor=10.16% 1 1 N/A N/A 0.96 0.986 0.042 0.098 
Censor=21.22% 1 1 N/A N/A 0.982 0.996 0.024 0.062 
n=500         
Censor=0% 1 1 N/A N/A 0.98 0.998 0.04 0.124 
Censor=10.20% 1 1 N/A N/A 0.992 1 0.05 0.11 
Censor=21.8% 1 1 N/A N/A 0.988 0.996 0.02 0.052 

 
Note: Iteration number k=500, Bootstrap Iteration number B=100, Sample size n=100, 200, 300, 400, 500 
Simulation DGP: 

X1～N(0,1); X2～N(0,1) 
     μi=x1i+2x2i
     Lognormal pdf for lifetime Ti: (2π)-0.5(σt)-1exp[-(logt-μi)2/(2σ2)],σ =0.8. 
 
Model (H0): 

λi=exp[-(α1x1i+α2x2i)] 
     Exponential pdf for lifetime yi: λiexp(-λit). 




