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ABSTRACT. We study the simultaneous occurrence of long memory and nonlinear effects such as struc-
tural breaks and thresholds in conditional volatility. We propose a model framework for returns and
conditional volatility and specify a Lagrange-multiplier test for nonlinear terms in the volatility equation
in the presence of long memory. The system allows for general nonlinear functions in the volatility equa-
tion. Asymptotic theory for the quasi-maximum likelihood estimator of the system is provided using a
triangular array setup. The theoretical results in the paper can be applied to any series with long memory
and nonlinearity. The methodology is applied to individual stocks of the Dow Jones Industrial Average
during the period 1995 to 2005. As a proxy for conditional volatility we consider a kernel-based realized
volatility measure. We find strong evidence of nonlinear effects and explore different specifications of the
model framework to study changes in the mean of realized volatility and leverage effects. A forecasting
exercise demonstrates that allowing for nonlinearities in long memory models yields performance gains.
KEYWORDS: Realized volatility, structural breaks, smooth transitions, nonlinear models, long memory,
persistence, triangular array asymptotics.

1. INTRODUCTION

In this paper we propose a system of equations framework to model the conditional mean and vari-
ance of daily asset returns using realized volatility time series data. The modeling framework disentan-
gles the confounding effects of long memory and non-linearities such as change points and threshold
effects in volatility. We study the asymptotic behavior of the maximum likelihood estimator and pro-
pose a Lagrange multiplier test for the null hypothesis of linearity of the volatility equation against
the alternative of unspecified non-linearity in the presence of long memory. The test and estimation
procedure can be applied to any time series that is suspected to have long memory and nonlinear ef-
fects, such that the results in the paper are not restricted to financial volatility. We apply our modeling
and test procedure to 28 stocks of the Dow Jones Industrial Average during the period 3-Jan-1995 to
31-Dec-2005.

Financial volatility plays a central role in risk-management. Andersen, Bollerslev, Christoffersen,
and Diebold (2007) give a recent overview. Earlier classes of volatility models such as (Generalized)
Autoregressive Conditional Heteroskedasticity proposed by Engle (1982) and Bollerslev (1986), sto-
chastic volatility models of Taylor (1986), or exponentially weighted moving averages (J. P. Morgan
1996) used squared daily returns as measure for volatility (see McAleer (2005) for an exposition).
Since this measure is very noisy, volatility was specified as unobservable, latent conditional standard
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deviation. However, as noted by Bollerslev (1987), Malmsten and Teräsvirta (2004), and Carnero,
Peña, and Ruiz (2004) among others, most of the latent volatility models fail to capture salient features
of financial time series. For example, standard latent volatility models fail to describe adequately the
slowly decreasing autocorrelation in the squared returns that is associated with the high kurtosis of
returns.

High frequency intra-day data have been used to construct estimates of volatility that are less contam-
inated by noise (Andersen and Bollerslev 1998, Andersen, Bollerslev, Diebold, and Ebens 2001, Ander-
sen, Bollerslev, Diebold, and Labys 2001b, Andersen, Bollerslev, Diebold, and Labys 2001a, Andersen,
Bollerslev, Diebold, and Labys 2003). Merton (1980) noted that the variance of a semi-martingale over
a fixed interval can be estimated as the sum of squared realizations within that interval, provided the
sampling mesh is sufficiently small. Since semi-martingales are a common model for asset prices, this
idea could in principle be applied to intra-day asset price data if these are sampled at sufficiently high
frequency. Then, the sum of intra-day squared returns is called realized variance, and its square root is
called realized volatility. Andersen and Bollerslev (1998) showed that daily foreign exchange volatility
can be measured by aggregating squared five-minute returns. The five-minute frequency is a trade-off
between accuracy and microstructure noise that can arise through bid-ask bounce, asynchronous trad-
ing, infrequent trading, and price discreteness, among other factors (Madhavan 2000, Biais, Glosten,
and Spatt 2005).

Realized volatility reduces the noise in the volatility estimate considerably compared to squared or
absolute daily returns. This enables researchers to specify explicit models for volatility and obviates the
latent variable approach. Realized volatility can also be used as a benchmark for the forecasting perfor-
mance of latent variable models (Andersen and Bollerslev 1998, Hansen and Lunde 2005, Patton 2005).
Measurement error still remains an issue and is studied, for example, in Barndorff-Nielsen and Shep-
hard (2002), Andersen, Bollerslev, Diebold, and Labys (2003), and Meddahi (2002). There are now
a number of consistent estimators of realized volatility for one day in the presence of microstructure
noise: the two-time scales realized volatility estimator proposed by Zhang, Mykland, and Aı̈t-Sahalia
(2005), the realized kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2007), and
the modified MA filter of Hansen, Large, and Lunde (2007); see McAleer and Medeiros (2006) for a
recent review.

The day-to-day dynamics of realized volatility exhibit long memory or high persistence, just as the
dynamics of squared or absolute daily returns (for example Ding, Granger, and Engle 1993). Andersen,
Bollerslev, Diebold, and Labys (2003) use an ARFIMA specification to model this long-range depen-
dence. An alternative to ARFIMA are models that approximate long memory by aggregation. Volatility
is modeled as a sum of different processes, each with low persistence. The aggregation induces long
memory; see, for example, Granger (1980), LeBaron (2001), Fouque, Papanicolaou, Sircar, and Sølna
(2003), Davidson and Sibbertsen (2005), or Hyung, Poon, and Granger (2005). This phenomenon is
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utilized in Corsi’s (2004) widely used HAR-RV model (Heterogeneous Autoregressive Model for Re-
alized Volatility), which builds on the HARCH specification proposed by Müller, Dacorogna, Dave,
Olsen, Pictet, and von Weizsäcker (1997).

The literature has also documented nonlinear effects in volatility, such as leverage and feedback
effects or multiple regimes (Black 1976, Nelson 1991, Glosten, Jagannathan, and Runkle 1993, Camp-
bell and Hentschel 1992). Regime changes can take the form of switches in the model parameters, for
instance governed by a Markov chain as in Hamilton and Susmel (1994), Cai (1994) and Gray (1996),
hard thresholds as discussed in Rabemananjara and Zakoian (1993), Li and Li (1996), and Liu, Li,
and Li (1997), or smooth transitions as in Hagerud (1997), Gonzalez-Rivera (1998), or Medeiros and
Veiga (2007). Commonly found are two regimes of low persistence for large positive and large negative
returns and one regime of high persistence for medium-range returns; see for instance, Longin (1997)
and Medeiros and Veiga (2007).

The statistical consequences of neglecting or misspecifying nonlinearities have been discussed in the
context of structural breaks in the GARCH literature (Diebold 1986, Lamoureux and Lastrapes 1990,
Mikosch and Starica 2004, Hillebrand 2005) and in the literature on long memory models (Lobato and
Savin 1998, Granger and Hyung 2004, Diebold and Inoue 2001, Granger and Teräsvirta 2001, Smith
2005). Neglected changes in levels or persistence induce estimated high persistence. This has often
been called “spurious” high persistence; see also Hillebrand and Medeiros (2006).

In the reverse direction, it is also possible to mistake data-generating high persistence (in the form
of long memory or unit roots) for nonlinearity. Spuriously estimated structural breaks were reported
for unit root processes (Nunes, Kuan, and Newbold 1995, Bai 1998) and extended to long memory
processes (Hsu 2001). In summary, it has been found over a wide array of studies that nonlinearity
(such as breaks) and long memory (or high persistence) are confounding factors.

Given these findings, it is desirable to have a modeling framework that is able to capture non-
linearities in the presence of long memory. Such a framework is a step towards disentangling the
confounding factors. Recently, a number of papers have studied long memory, jumps, leverage, and
volatility-in-mean effects (Martens, van Dijk, and de Pooter 2004, Christensen and Nielsen 2007, Chris-
tensen, Nielsen, and Zhu 2007, Andersen, Bollerslev, Federiksen, and Nielsen 2007, Andersen, Boller-
slev, and Huang 2007, Bollerslev, Kretschmer, Pigorsch, and Tauchen 2007). The studies most closely
related to ours are Baillie and Kapetanios (2007a, 2007b), who also propose a (different) test for non-
linearity in the presence of long memory and develop a smooth transition autoregression which is
embedded within a long memory process. Following a different approach, McAleer and Medeiros
(2007) put forward a nonlinear HAR-RV model that is able to describe both long range dependence
and nonlinear dynamics, such as leverage effects.

Our model adds to this literature in two ways. (1) We propose a system of equations for returns and
realized volatility of an asset that allows for long memory and general non-linearities in volatility. We
derive the asymptotic behavior of the quasi-maximum-likelihood estimator of the parameter vector. The
challenge is to allow for changing regimes in time. Then, as the number of observations approaches
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infinity, the parameters of regimes of finite length become unidentified. We employ triangular array
asymptotics to solve this problem (Saikkonen and Choi 2004, Andrews and McDermott 1995). (2)
We develop a Lagrange multiplier test for the null hypothesis of linearity of the volatility equation
against general non-linearity in the presence of long memory. Our test statistic is based on the results
of van Dijk, Franses, and Paap (2002) and Medeiros, Teräsvirta, and Rech (2006). The test employs
a Taylor series approximation of the unknown nonlinear structure. Common test statistics for general
non-linearity are proposed by Teräsvirta (1994) and Hansen (1996). For the test of Teräsvirta (1994),
Andersson, Eklund, and Lyhagen (1999) provide simulation evidence that a long memory process
appears to be nonlinear if the lagged time series is used as threshold variable, indicating a size problem
due to the confusion of long memory and non-linearity. We show in size discrepancy simulations that
our test is able to address this problem.

Applying our model and testing framework to 28 stocks of the Dow Jones Industrial Average, we find
evidence of structural breaks in the individual realized volatility time series, in particular a transition
from high to low volatility around the year 2003. Dependence of volatility on the level of lagged
returns is a robust finding across all stocks and in different model specifications, indicating leverage
and asymmetry effects. Both, long memory and non-linear effects like change-points and leverage
effects coexist in the realized volatility data. Accounting for non-linear terms in the volatility model
specification yields forecast gains as we show in a prediction experiment.

The paper is organized as follows. Section 2 presents the model and develops the asymptotic theory
of the quasi maximum likelihood estimation. The linearity test is introduced in Section 3. Monte Carlo
evidence for its adequacy is reported and we describe how the test can be used in the model selection
process. Empirical results are shown in Section 4. Section 5 concludes.

2. LONG MEMORY AND NONLINEARITY IN REALIZED VOLATILITY

2.1. Model Specification. We specify a system of non-linear equations for returns and conditional
volatility:

rt = β′xt + λvt + σtet (1)

vt := (1− L)d log(σt) = g(zt; ξ) + Θ(L)ut, (2)

where xt = (1, x̃′t)′ ∈ Rkx+1 and x̃t is a vector of kx explanatory variables for the conditional mean of
returns, which may include lagged values of the returns, days-of-the-week dummies and announcement
dates. β is a (kx + 1)-vector of parameters, λ ∈ R is a volatility-in-mean coefficient. From equations
(1) and (2) it is clear that E (rt|xt, σt,Ft−1) = β′xt + λvt and Var (rt|xt, σt,Ft−1) = σ2

t . Ft−1 is
the filtration given by all information up to time t− 1. Conditional volatility enters the return equation
twice: as fractionally differenced log conditional volatility vt in the volatility-in-mean term and as
standard deviation σt in the error term. Note that fractionally differencing the volatility-in-mean term
ensures that the long memory property of volatility does not carry over to the returns.
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The volatility equation (2) specifies the model for σt. Here, d ∈ (−1/2, 1/2) is the fractional dif-
ferencing parameter, σt is conditional volatility, the function g(zt; ξ) is some nonlinear function to be
specified, which is indexed by the vector of parameters ξ ∈ Rkξ , and zt ∈ Rkz is a vector of explana-
tory variables for the conditional variance possibly including lagged values of vt. xt and zt may have
common elements. The returns rt and the volatility process σt are observable but exhibit errors et and
ut, which are independent martingale difference sequences. Θ(L) =

(
1 + θ1L + θ2L

2 + · · ·+ θqL
q
)

is a moving average lag polynomial of order q. We assume that all dependencies between returns
and volatility are explicitly captured in the volatility-in-mean parameter λ and the nonlinear term
g(·). The model is indexed by the vector of parameters ψ =

(
β′, λ, d, ξ′, θ′, σ2

u

)′ ∈ Rkψ , where
θ = (θ1, . . . , θq)′ ∈ Rq.

In the asymptotic derivations in Section 2.3 we assume that the conditional volatility process is
Ft−measurable. We then replace σt by an unbiased and consistent estimator of daily integrated volatil-
ity, the kernel-based realized volatility estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2007). Appendix A briefly introduces the theoretical foundations of realized volatility and provides a
discussion of this assumption.

2.2. Interpretation. The choice of the function g(·) is very flexible and allows for different specifica-
tions. The following examples list some possibilities.

EXAMPLE 1 (Linear ARFIMA). Set zt = (vt−1, . . . , vt−p)′ and consider the following choice for the
function g(·):

g(zt; ξ) = φ0 + φ1vt−1 + · · ·+ φpvt−p.

In that case, equation (2) may be written as

Φ(L)(1− L)d [log(σt)− µ] = Θ(L)ut,

where Φ(L) =
(
1− φ1L− φ2L

2 − · · · − φpL
p
)

and µ = Φ−1(1)φ0. In this case volatility follows an
ARFIMA(p,d,q) model. If d = 0, the volatility process is short-memory. This type of specification of
the volatility equation was advocated in Andersen, Bollerslev, Diebold, and Labys (2003).

EXAMPLE 2 (ARFIMA with smoothly changing parameters). Define wt = (vt−1, . . . , vt−p)′ and set
zt = (w′

t, t)
′. vt is defined as above. Consider the following choice for the function g(·):

g(zt; ξ) = φ0 + φ′wt +
(
φ̃0 + φ̃

′
wt

)
f [γ(t− c)],

where f(y) = (1 + e−y)−1 is the logistic function. Equation (2) becomes

(1− L)d log(σt) =φ0 +
p∑

i=1

φi(1− L)d log(σt−i)+

{
φ̃0 +

p∑

i=1

φ̃i(1− L)d log(σt−i)

}
f [γ(t− c)] + Θ(L)ut.
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The parameter γ controls the smoothness of the transition. In the limit γ −→∞, the model becomes an
ARFIMA model with a structural break at t = c. In the regression framework this type of specification
has been considered in Lin and Teräsvirta (1994).

A possible generalization of the model is to follow the ideas in Medeiros and Veiga (2003) and
consider the specification below:

(1− L)d log(σt) = φ0 +
p∑

i=1

φi(1− L)d log(σt−i)

+
M∑

m=1

{
φ̃0,m +

p∑

i=1

φ̃i,m(1− L)d log(σt−i)

}
f [γm(t− cm)]

+ Θ(L)ut.

EXAMPLE 3 (ARFIMA with asymmetry). Now let zt = (w′
t, et−1)′ with wt as in the example above.

One possibility to accommodate leverage effects is to choose g(·) as

g(zt; ξ) = φ0 + φ′wt +
(
φ̃0 + φ̃

′
wt

)
f(γet−1),

with f(·) being again the logistic function. In the case γ −→ ∞ the logistic function becomes a step
function and the model has the same flavor as the GJR-GARCH specification of Glosten, Jagannathan,
and Runkle (1993). See van Dijk, Franses, and Paap (2002) for a related specification for macroeco-
nomic time series and Hagerud (1997), Gonzalez-Rivera (1998), Lundbergh and Teräsvirta (1998) for
similar ideas in latent volatility models.

Another possible generalization is to consider multiple regimes as in Medeiros and Veiga (2007):

g(zt; ξ) = φ0 + φ′wt +
M∑

m=1

(
φ̃0,m + φ̃

′
mwt

)
f [γm (et−1 − cm)] .

The number of regimes is defined by the parameter M . For example, suppose that M = 2, c1 is highly
negative, and c2 is large and positive. Then the resulting model model will have three regimes that can
be interpreted as responding to very low negative shocks, tranquil periods, and highly positive shocks,
respectively.

EXAMPLE 4 (General Nonlinear ARFIMA). An interesting alternative is to leave the type of nonlin-
earity partially unspecified. This can be done by specifying the function g(·) as a single hidden layer
neural network (NN) of the following form

g(zt; ξ) = ν0 + ν ′zt +
M∑

m=1

νmf
[
γm

(
ω′mzt − ηm

)]
, (3)

where again f(·) is the logistic function, γm > 0, and ‖ωm‖ = 1 with

ωm1 =

√√√√1−
q∑

j=2

ω2
mj , m = 1, . . . , M.
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This is a long-memory version of the model discussed in Medeiros, Teräsvirta, and Rech (2006).

In a related paper, Martens, van Dijk, and de Pooter (2004) put forward a model to jointly describe
long-range dependence, nonlinearity, structural breaks and effects of days of the week. The model con-
sidered in their paper is nested in specification (1), (2). We also propose a linearity test and asymptotic
theory for the maximum likelihood estimator.

The return equation (1) is flexible enough to allow for permanent and temporary components specifi-
cations (Fama and French 1988) with or without exogenous predictors (Harvey 2001). The volatility-in-
mean component is included to consistently capture the correlation between contemporaneous returns
and volatility. This correlation is usually found to be negative (Brandt and Kiang 2004) and is attrib-
uted to the leverage effect (Black 1976) and to the feedback effect (Campbell and Hentschel 1992).
Our model does not resolve the difference between the two effects; our research focus is on volatility
dynamics. The volatility-in-returns term in equation (1) captures this direction of the correlation while
we focus on returns-in-volatility effects like asymmetry and leverage in equation (2).

Model (1) and (2) is a model for time series of daily realized volatility and daily returns. We do
not advocate it as data-generating process for intraday returns and volatility. It is in general possible,
however, to interpret the model as data-generating process for intraday data. Appendix B provides
some details. It is also possible to specify continuous time diffusions as models of intraday data that
imply many of the statistical features considered in (1) and (2). Such a diffusion may feature stochastic
volatility that is driven by the sum of several Ornstein-Uhlenbeck processes of different decorrela-
tion lengths (LeBaron 2001, Fouque, Papanicolaou, and Sircar 2000). This aggregation induces long
memory similar to the argument in Granger (1980). Asymmetry effects can be captured by negative
contemporaneous correlation between the Brownian motions in the return and in the volatility equation.

2.3. Parameter Estimation.

2.3.1. Triangular Arrays. In this paper, we will use triangular array asymptotics to analyze model (1),
(2) (Saikkonen and Choi 2004, Andrews and McDermott 1995). Let T0 be the actual sample size.
Then, model (1), (2) is embedded in a sequence of models

rtT = β′xtT + λvtT + σtT et, (4)

vtT := (1− L)d log(σtT ) = g(ztT ; ξ) + Θ(L)ut, (5)

where ytT := (T0/T )yt for any sequence {yt}, t = 1, . . . , T .
To illustrate the point of writing the model in triangular arrays, consider Example 2, where g(zt; ξ)

contains a single logistic transition in an otherwise linear model:

g(zt; ξ) = φ0 + φ′wt +
(
φ̃0 + φ̃

′
wt

)
f [γ(t− c)].

Since, for T large,
f [γ(t− c)] = f [Tγ(T−1t− T−1c)] ≈ 1{T−1t>0},
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the parameters φ0 and φ that govern the first regime as well as the transition parameters γ and c

vanish from the model and become unidentified. Triangular array asymptotics consider suitably scaled
variables, here:

f

[
γ

(
T0

T
t− c

)]
= f

[
T−1γ (T0t− Tc)

]
.

Here, the slope of the logistic function is decreasing with T while the locus of the transition is in-
creasing with T , whereas the scaling of the time counter, T0, remains constant. Thus, the proportions
of observations in the first regime, during the transition, and in the last regime remain the same. The
parameters in these groups of observations remain identified.

2.3.2. Assumptions. We denote the data-generating parameter vector as

ψ0 =
(
β′0, λ0, d0, ξ

′
0, θ

′
0, σ

2
u,0

)′
.

We write et(ψ) and ut(ψ) such that the notation can be used for both, the residuals from the estimation
and the data-generating errors:

et(ψ) = σ−1
tT (rtT − β′xtT − λvtT ),

ut(ψ) = Θ−1(L)
[
(1− L)d log σtT − g(zt; ξ)

]
,

and we use the shorthand notation et,0 := et(ψ0), ut,0 := ut(ψ0) for the data-generating errors
and et, ut for et(ψ) and ut(ψ). Note that the fractional integration parameter d is an element of ψ

and estimated jointly with the other parameters. Maximum likelihood estimation of d is addressed in
Sowell (1992) and Chung and Baillie (1993).

ASSUMPTION 1 (Parameter Space). The parameter vector ψ0 ∈ Ψ ⊂ Rkx+kξ+q+4 is an interior point
of Ψ, a compact parameter space.

ASSUMPTION 2 (Measurability of σtT ). The conditional variance process σtT is Ft-measurable.

This assumption is discussed in Appendix A.

ASSUMPTION 3 (Errors).

(1) et,0 is a martingale difference sequence with mean zero and unit variance.
(2) ut,0 is a martingale difference sequence with mean zero and constant variance σ2

u,0 > 0.
(3) E|ut,0|q < ∞ for q = 1, 2, 4.
(4) E exp(ut,0)q < ∞ for q = 1, 2, 4.
(5) et,0, ut,0 are independent.

ASSUMPTION 4 (Stationarity and Moments).

(1) The model defined by equations (4) and (5) is stationary and ergodic.
(2) E|xtT |q < ∞, q = 1, 2, 4.
(3) E|ztT |q < ∞, q = 1, 2, 4.
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Assumption 4 implies that xtT and ztT are stationary and ergodic, d0 ∈ (−1/2, 1/2), and Θ(L) is
invertible.

ASSUMPTION 5 (Nonlinear Function).

(1) g(ztT ; ξ) is continuous in ξ and measurable in ztT .
(2) g(ztT ; ξ) is parameterized such that the parameters are well defined.
(3) g(ztT ; ξ) and ut,0 are independent.
(4) E|g(ztT ; ξ)|q < ∞, q = 1, 2, 4.
(5) E {exp [g (ztT ; ξ)]q} < ∞, q = 1, 2, 4.

(6) E
∣∣∣ ∂
∂ξg(ztT ; ξ)

∣∣∣
q

< ∞, q = 1, 2, 4. Note: We allow for ξi = d for some i.

(7) E
∣∣∣ ∂2

∂ξ∂ξ′ g(ztT ; ξ)
∣∣∣
q

< ∞, q = 1, 2.

EXAMPLE 5 (for Assumption 5 (2): Logistic Transition). If there are H+1 different regimes of volatil-
ity depending on a state variable st (for example past excess returns et−1 or time t) with transitions
governed by logistic functions, then the transition parameters ci and γi, i = 1, . . . , H are such that

(1) −∞ < −M < c1 < . . . < cH < M < ∞.
(2) γi > 0 for all i.
(3) f [γ1(st − c1)] ≥ f [γ2(st − c2)] ≥ . . . ≥ f [γH(st − cH)].

2.3.3. Quasi Maximum Likelihood Estimator. The assumption on the error vector εt,0 := (et,0, ut.0)′

implies that E(εt,0ε
′
t,0) = diag(1, σ2

u) and the quasi log-likelihood function is given by

LT (ψ) =
1
T

T∑

t=1

`t(ψ),

where
`t(ψ) = −1

2
(
log 2π + log σ2

u + e2
t + u2

t σ
−2
u

)
.

The parameter vector is estimated by quasi maximum likelihood as

ψ̂T = argmax
ψ∈Ψ

LT (ψ),

where Ψ is the parameter space.

THEOREM 1 (Consistency). Under Assumptions 1 through 5, the quasi maximum likelihood estimator
ψ̂T is consistent:

ψ̂T
p→ ψ0.

The proof is provided in the Appendix.

THEOREM 2 (Asymptotic Normality). Under Assumptions 1 through 5, the quasi maximum likelihood
estimator ψ̂T is asymptotically normally distributed:

√
T

(
ψ̂T −ψ0

)
d→ N (

0, A(ψ0)
−1B(ψ0)A(ψ0)

−1
)
,
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where

A(ψ0) = −E ∂2`t

∂ψ∂ψ′

∣∣∣∣
ψ0

,

B(ψ0) = E

(
∂`t

∂ψ

∣∣∣∣
ψ0

∂`t

∂ψ′

∣∣∣∣
ψ0

)
.

The proof is provided in the Appendix.

PROPOSITION 1 (Covariance Matrix Estimation). Under Assumptions 1 through 5,

AT
p→ A, BT

p→ B,

where

AT (ψ) = − 1
T

T∑

t=1

∂2`t

∂ψ∂ψ′ ,

and

BT (ψ) =
1
T

T∑

t=1

∂`t

∂ψ

∂`t

∂ψ′ ,

and A, B as defined in Theorem 2.

The proof is provided in the Appendix.

3. LINEARITY TESTING AGAINST GENERAL NONLINEARITY

3.1. Test Statistic. In this section we will describe a linearity test against a flexible nonlinear form.
We advocate the use of the neural network (NN) specification as in Example 4. This type of model
has found applications in a number of fields, including economics and finance. The use of the NN
model in applied work is generally motivated by a mathematical result stating that under mild regularity
conditions, a relatively simple NN model is capable of approximating any Borel-measurable function
to any given degree of accuracy. See, for example, Fine (1999) and the references therein.

The testing procedure will be partially based on the results of Teräsvirta, Lin, and Granger (1993)
and Medeiros, Teräsvirta, and Rech (2006). Consider a similar specification as in Example 4 with
zt = (w′

t, s
′
t)
′ ∈ Rkw+ks . To simplify the exposition we consider the case where there is no moving

average term (q = 0). However, it is not difficult to extend our results to the case with q > 0. The
volatility equation in model (1) and (2) using (3) can be rewritten as

(1− L)d log(σt) = ν0 + ν ′zt +
M∑

m=1

νmf
[
γm

(
ω′mwt − ηm

)]
+ ut. (6)

Consider the case where we want to test M = 0 against M > 0. The appropriate null hypothesis is

H0 : γ1 = γ2 = · · · = γM = 0. (7)

Under (7), the additional hidden unit is identically equal to a constant and merges with the intercept in
the linear unit.
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Under the null of linearity the parameters of (6) can be estimated consistently. Model (6) is only iden-
tified under the alternative, which means that the standard asymptotic inference is not available. This
problem is circumvented as in Medeiros, Teräsvirta, and Rech (2006) by expanding f [γm (ω′mwt − ηm)],
m = 1, . . . ,M , into a Taylor series around the null hypothesis (7). The order of the expansion is a
compromise between a small approximation error (high order) and availability of data (short time se-
ries necessarily imply a relatively low order). Using a third-order Taylor expansion, rearranging and
merging terms results in the following model

(1− L)d log(σt) = π0 + π′wt + ρ′st +
kw∑

i=1

kw∑

j=i

ρijwi,twj,t

+
kw∑

i=1

kw∑

j=i

kw∑

k=j

ρijkwi,twj,twk,t + u∗t ,

(8)

where u∗t = ut + R3(zt; ξ) and R3(zt; ξ) is the remainder of the Taylor expansion.
The null hypothesis (7) is then approximated by

H0 : ρ = 0, ρij = 0, ρijk = 0.

Under the null, R3(zt; ξ) = 0. We can use (8) to test linearity. The local approximation for observation
t takes the form

`t(ψ) =− 1
2

log(2π)− 1
2

{
rt − β′xt − λ

[
(1− L)d log(σt)

]

σt

}2

− 1
2

log(σ2
u)− 1

2σ2
u

×
{

(1− L)d log(σt)− π0 − π′wt − ρ′st

−
kw∑

i=1

kw∑

j=i

ρijwi,twj,t −
kw∑

i=1

kw∑

j=i

kw∑

k=j

ρijkwi,twj,twk,t

}2

.

(9)
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Because the information matrix is block diagonal, the error variance σ2
u can be treated as fixed. The

partial derivatives of (9) evaluated under the null hypothesis are:

∂`t(ψ)
∂β

∣∣∣∣∣
H0

= êt
xt

σt
;

∂`t(ψ)
∂λ

∣∣∣∣∣
H0

= êt
v̂t

σt
;

∂`t(ψ)
∂d

∣∣∣∣∣
H0

= − ut

σ2
u

[
Φ(L)

(
∂

∂d
(1− L)d

)
log ht − α′

(
∂

∂d
(1− L)d

)
xt

]

+ λ
et

ht

[
∂

∂d
(1− L)d

]
log ht;

∂`t(ψ)
∂π0

∣∣∣∣∣
H0

=
1
σ̂2

u

ût;

∂`t(ψ)
∂π

∣∣∣∣∣
H0

=
1
σ̂2

u

ûtwt;

∂`t(ψ)
∂ρ

∣∣∣∣∣
H0

=
1
σ̂2

u

ûtst;

∂`t(ψ)
∂ρij

∣∣∣∣∣
H0

=
1
σ̂2

u

ûtwi,twj,t;

∂`t(ψ)
∂ρijk

∣∣∣∣∣
H0

=
1
σ̂2

u

ûtwi,twj,twk,t,

where êt = (rt− β̂
′
xt− λ̂v̂t)/σt, ût = v̂t− π̂0− π̂′wt− ρ̂′st is the residual estimated under the null,

v̂t = (1− L)bd log(σt), σ̂2
u =

∑T
t=1 û2

t /T , and

∂

∂d
(1− L)d =

∞∑

j=0

(−1)j

j!

(
j−1∑

i=0

1
d− i

)
j−1∏

i=0

(d− i)Lj .

Under the information matrix equality, the Lagrange Multiplier (LM) statistic is given by

LM =
T∑

t=1

q̂′t

{
T∑

t=1

q̂tq̂′t

}−1 T∑

t=1

q̂t, (10)

where q̂t = (q̂0,t,qa,t)
′ with

q̂0,t =

(
1,w′

t,
∂`t(ψ)

∂d

∣∣∣∣∣
H0

)′

and
qa,t =

(
w2

1,t, w1,tw2,t, . . . , wi,twj,t, . . . , w
3
1,t, . . . , wi,twj,twk,t, . . . , w

3
kw,t

)′
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is the gradient of the log-likelihood function evaluated under the null as above.
Under standard regularity conditions and the additional assumption E|wi,t|δ < ∞, i = 1, . . . , kw,

for some δ > 6, (10) has an asymptotic χ2 distribution with m = kw(kw+1)/2+kw(kw+1)(kw+2)/6
degrees of freedom. Defining ι = (1, 1, . . . , 1)′ ∈ RT and

Q̂ =




q̂′1
q̂′2
...

q̂′T




,

the LM statistic can be written as

LM = ι′Q̂
(
Q̂′Q̂

)−1
Q̂′ι

and the test can be carried out in stages as follows:

(1) Estimate the parameters under the null and compute the residuals ût and êt. If the sample size
is small, usually the fractional difference parameter d is difficult to estimate such that the first
order condition

δL(ψ)
δψ

∣∣∣∣∣
H0

= 0

is not met. This has an adverse effect on the empirical size of the test. To circumvent this
problem, we regress the residuals ût and êt on the derivative of the gradient with respect to ût

and êt. Finally, we compute a new sequence of residuals ũt and ẽt from these regressions.
(2) Regress ι on Q and compute the sum of squared residuals (SSR) from this regression.
(3) Compute the χ2 statistic

LMχ = T − SSR.

3.2. Model Selection. The modeling cycle consists of several steps. First, it is necessary to select
the variables xt and zt. Possible choices are lags of fractionally differenced volatility, lagged values of
returns and squared returns, a time index as in Example 2 or lagged values of et to capture asymmetries.
Second, if linearity is rejected, we should choose the nonlinear function g(zt; ξ). Linearity tests against
specific forms of g(zt; ξ), such as in Example 2 and 3, can also be developed and used to discriminate
among different nonlinear alternatives. After estimating the models, diagnostic tests must be used in
order to check model adequacy.

In this paper we propose the following steps for model building:

(1) Start setting g(zt; ξ) = ξ0 + ξ′zt.
(2) The elements of xt and zt are selected using a given choice of information criterion, such as

the AIC or SBIC.
(3) Linearity is tested for different choices of wt in (6) and the one that minimizes the p-value of

the test is selected as the final choice.
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(4) Based on the results of the linearity tests, different nonlinear alternatives may be estimated,
including a neural network.

(5) The estimated models are evaluated by a sequence of diagnostic tests and also by their fore-
casting performance.

3.3. Monte-Carlo Evidence. The purpose of this section is to evaluate the small sample perfor-
mance of the linearity test described in the previous section. Set vt = (1 − L)0.4 log(σt) and ut ∼
NID(0, 0.25). To check if the test is well-sized, we simulate 1000 replications with 1000 and 200
observations of the following model:

rt = λvt + σtet

vt = 0.2 + 0.8vt−1 + ut,

We consider two cases: λ = 0 and with λ = 0.5. We run the linearity test described in Section 3
with three choices of variable specification. In the first one zt = wt = vt−1. The second choice is
wt = vt−1 and the variable in the nonlinear specification is t. Finally, we run the test with et−1 as the
nonlinear variable. The results are described in Figure 1, which shows the size discrepancy plots.

FIGURE 1 ABOUT HERE

As can be observed, the size distortions are small, especially for the nominal values typically used
in practical applications. We also simulated a series of nonlinear models to check the power of the test.
As expected, the power converges to one very rapidly and the results are omitted for brevity.

4. EMPIRICAL APPLICATION

4.1. Data. We use high frequency tick-by-tick quotes on twenty eight Dow Jones Industrial Average
Index stocks as listed in Table 1: Alcoa (aa), American International Group (aig), American Express
(axp), Boeing (ba), Citigroup (c), Caterpillar (cat), Du Pont (dd), Walt Disney (dis), General Electric
(ge), General Motors (gm), Home Depot (hd), Honeywell (hon), Hewlett Packard (hpq), International
Business Machines (ibm), Johnson and Johnson (jnj), JP Morgan Chase (jpm), Coca Cola (ko), Mc-
Donald’s (mcd), 3M Company (mmm), Altria Group (mo), Merck (mrk), Pfizer Inc. (pfe), Procter and
Gamble (pg), AT&T (t), United Tech (utx), Verizon Communications (vz), Wal-Mart Stores (wmt) and
Exxon Mobil (xom). The data were obtained from the NYSE TAQ database and they cover the period
January 3, 1995 up to December 31,2005. (Exceptions are xom, vz, and hpq, for which only data from
1999 to 2005, 2000 to 2005, and 2002 to 2005 are available, respectively.)

In calculating the daily realized volatility we employ the realized kernel estimator with modified
generalized Tukey-Hanning weights of order two according to Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2007). We clean the data for outliers. We discard transactions outside trading hours, con-
sidering transactions between 9.30am through 4.00pm. Following Barndorff-Nielsen, Hansen, Lunde,
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and Shephard (2007) we use a 60-second activity fixed tick time sampling scheme such that we obtain
the same number of observations each day.

4.2. Model Specification and Estimation. In this section, we estimate model (1) and (2) employing
four different specifications for the nonlinear function g. Our intention is not to be authoritative about
any of these specifications being the “right” one but we intend to illustrate how the model framework
can be adapted for different purposes of study. Prior to estimating the model, we estimate the long
memory parameter d on the realized volatility time series using Geweke and Porter-Hudak’s (1983)
estimator (GPH) and using the Whittle estimator with different AR filters. Table 1 presents the results.
For the GPH estimator with α = 0.65 and for the Whittle estimator with lag order p = 5, roughly
one-half of the time series are estimated in the non-stationary range. For the GPH estimator with the
commonly used α = 0.5, the majority of stocks is estimated to be non-stationary. For the Whittle
estimate with lag structures p = 3, 4, the majority of stocks is estimated to be stationary with d close
to 0.40.

First, we consider g to consist only of an autoregressive term, so that equation (2) is linear. This
specification can capture HAR-RV models (in the case of d = 0) that conform with AR(p) structures as
in Bollerslev, Kretschmer, Pigorsch, and Tauchen (2007). Here, we choose the autoregressive lag order
p by minimizing the Akaike Information Criterion (AIC). Table 2 reports the results. Even though
a linear structure is chosen for the volatility equation, the ML-estimates of d are already all in the
stationary region. Caterpillar (cat) is an outlier in that it shows an estimated negative d (corresponding
to anti-persistence, or negative serial correlation) consistently across all specifications. The estimates
of the volatility-in-mean parameter λ are negative for the majority of the stocks. This corresponds to
the leverage and feedback effect concepts. For seven stocks, however, the estimates are significantly
positive, and in one case (Citigroup) the estimate of λ is not significantly different from zero. It is
beyond the scope of this paper to analyze these effects more deeply, see Brandt and Kiang (2004) and
the work cited therein for reference.

The next step in the model building procedure is to test for nonlinearities in the presence of long
memory. We apply the test statistic proposed in equation (10) to the time series with the following
candidates for transition variables: (1) returns at lag one, (2) cumulative returns over five days, (3)
cumulative returns over 22 days, (4) time. Table 3 reports the p-values for the test statistic across the
different candidate transition variables. All test statistics are significant at the 1% significance level at
least, with the exception of time in the case of eight stocks. This strongly suggests non-linear effects
that correspond to movements in the candidate transition variables.

FIGURE 2 ABOUT HERE

Motivated by the results of the test, we contrast the linear specification of equation (2) with three
different nonlinear specifications of g.
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(1) We consider time as transition variable so that we can analyze the realized volatility time series
for structural breaks (i.e. changes in the mean of the volatility time series). The number of
transition functions is chosen by minimizing AIC. Table 4 reports the estimates and Figure 2
shows the actual and fitted realized volatility series for four selected stocks together with the
sum of the transition functions. Almost all estimations pick up a change in the volatility level
from high to low around the year 2003, many also detect a transition from low to high volatility
around the year 1998. For most time series, one or two transitions are detected. There is one
instance of three and one instance of four estimated transitions. Again, the estimates of the
d-parameter are all within the stationary realm and cluster around 0.40.

(2) We consider returns at lag one as transition variable. Changing volatility levels as functions
of past returns correspond to the idea of leverage and/or feedback effects. The number of
transitions is chosen by AIC. Table 5 reports the estimates and Figure 3 shows the actual and
fitted realized volatility series for four selected stocks. For the large majority of stocks, the
transition characteristics resemble the one depicted for Johnson and Johnson in panel (a) of
Figure 3: Volatility is relatively low for an intermediate range of relatively small negative and
positive returns and high in two different regimes of highly positive and highly negative re-
turns. Similar findings have been reported before, for example in Medeiros and Veiga (2007).
Sometimes there is no intermediate regime but the transition is smeared across two distinct
regimes for large positive and large negative returns, as shown in panel (b) for General Elec-
tric. Rarely the smooth transition is interrupted by a hard one for very large positive returns
(panel (c), Coca-Cola), and the case of four regimes with hard transitions has only one instance
(panel (d), Procter and Gamble). The estimation findings for the long memory parameter d

and the volatility-in-mean parameter λ are qualitatively similar to the case of time as transition
function.

(3) We consider linear combinations of lagged returns as transition variable. The order of the linear
combination as well as the number of transitions are chosen according to AIC. Each transition
can be driven by a different linear combination of returns. The economic interpretation of
these combinations is not immediate but Table 6 shows in the last column that the R2 of this
specification is higher, indicating a better in-sample fit. This specification is closer in spirit to
the fully general nonlinear specification proposed in equation (3).

FIGURE 3 ABOUT HERE

4.3. Forecast Exercise. We construct a forecasting experiment using the last 600 data points as fore-
cast sample, i.e., we exclude the last 600 points from the estimation. We consider the linear specifica-
tion of model (1) and (2) as in Example 1 and in Table 2, the specification with returns at lag one as in
Example 3 and in Table 5, and the general nonlinear specification as in Table 6. We compare model (1)
and (2) with the HAR-RV specification of Corsi (2004) and Andersen, Bollerslev, and Diebold (2007).
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We employ the realized volatility version of the HAR-RV model (as opposed to the logarithmic real-
ized volatility version) with lags 1, 5, and 22. The R2 from Mincer-Zarnowitz regressions is reported
in Table 7 for the four specifications. The numbers in parentheses report the p-value for the Superior
Predictive Ability test of Hansen (2005). A low p-value indicates that the model was significantly out-
performed by at least one other model in the set. At a ten percent significance level, the benchmark
HAR-RV model could not be rejected for 12 out of 28 stocks. The linear specification of (1) and (2)
could not be rejected for 26 out of 28 stocks. This may seem surprising; note that the linear specifi-
cation still features fractional integration. The specification with past returns at lag one could not be
rejected in 19 of 28 cases; the general nonlinear specification with AIC-selected linear combinations
of lags of past returns could not be rejected in 20 out of 28 cases. We can conclude that accounting for
nonlinear terms in the presence of long memory yields forecast advantages in our sample.

5. CONCLUSION

In financial volatility, nonlinearities such as structural breaks are difficult to tell apart from long
memory. In this paper, we propose an estimation framework for nonlinear effects such as structural
breaks and leverage in the presence of long memory. The framework specifies a nonlinear system of
equations for returns and realized volatility that accommodates volatility-in-mean effects, long memory,
and a general non-linear function that may include transitions between parameter regimes and leverage
effects.

From the model specification, we derive a test statistic that allows to test for nonlinear terms in the
volatility equation in the presence of long memory. The test evaluates the significance of second and
higher order terms in the Taylor expansion of the nonlinear function in the volatility equation.

Once the type of nonlinearity and the relevant variables are identified, a process for which we pro-
pose a model selection cycle, the full specification is estimated using the stocks in the Dow Jones
Industrial Average. We find strong evidence for nonlinear effects driven by time and past returns in
all stocks. The results indicate that long memory, changes in the mean, and leverage effects in a wide
sense, i.e. dependence on linear combinations of past returns, coexist in realized volatility data. In
accordance with earlier findings, the long memory parameter estimates are reduced once the nonlinear
effects are accounted for.
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TABLE 1. FRACTIONAL DIFFERENCE ESTIMATION.

Estimation results for parameter d. The Whittle estimator is considered under different autoregressive orders
(p). The number of ordinates in the GPH estimator is set as l = T α, where T is the number of observations.

Series GPH (α = 0.5) GPH (α = 0.65) Whittle (p = 3) Whittle (p = 4) Whittle (p = 5)
aa 0.5416 0.5183 0.3870 0.4475 0.4887
aig 0.6054 0.5683 0.4292 0.4928 0.5226
axp 0.6079 0.5498 0.4353 0.4807 0.5281
ba 0.5302 0.4630 0.3697 0.4060 0.4511
c 0.5815 0.5269 0.4326 0.4916 0.5155

cat 0.5770 0.3910 0.3383 0.3746 0.4374
dd 0.5432 0.4907 0.3966 0.4518 0.4923
dis 0.6139 0.4867 0.4118 0.4567 0.4938
ge 0.5371 0.4606 0.4277 0.4771 0.5109
gm 0.5911 0.5733 0.3717 0.4430 0.4838
hd 0.4112 0.4660 0.3976 0.4575 0.4780
hon 0.4234 0.5137 0.3693 0.4274 0.4644
hpq 0.7505 0.5291 0.4853 0.5326 0.5480
ibm 0.6990 0.4805 0.4206 0.4800 0.5270
jnj 0.6342 0.5240 0.4019 0.4603 0.4838

jpm 0.5909 0.5133 0.4319 0.4767 0.5292
ko 0.5070 0.5152 0.4105 0.4735 0.4913

mcd 0.5749 0.4472 0.3498 0.4032 0.4471
mmm 0.4838 0.4905 0.3980 0.4465 0.4704

mo 0.5081 0.4486 0.3610 0.4018 0.4242
mrk 0.4349 0.4423 0.3609 0.4089 0.4669
pfe 0.4961 0.4362 0.3435 0.3967 0.4464
pg 0.4459 0.5105 0.4244 0.4732 0.5238
t 0.4411 0.4173 0.3987 0.4388 0.4849

utx 0.5446 0.4490 0.4171 0.4725 0.5172
vz 0.8258 0.6441 0.4768 0.5442 0.5818

wmt 0.5711 0.4806 0.4116 0.4592 0.4819
xom 0.6627 0.6805 0.5041 0.5684 0.6224
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TABLE 2. LINEAR ESTIMATION RESULTS.

Estimates of the optimal autoregressive order of the volatility
equation selected by the AIC, parameter estimates (standard er-
rors in parentheses), and R2.

Series p β λ d R2

aa 4 −0.0623
(0.0230)

−0.1254
(0.0139)

0.4873
(0.0244)

0.7644

aig 3 −0.0096
(0.0150)

−0.1342
(0.0079)

0.4368
(0.0262)

0.6736

axp 4 −0.0463
(0.0100)

−0.2305
(0.0042)

0.4722
(0.0245)

0.6629

ba 4 −0.0014
(0.0168)

−0.1373
(0.0086)

0.4042
(0.0271)

0.7043

c 3 0.0817
(0.0120)

0.0038
(0.0063)

0.4842
(0.0260)

0.6763

cat 4 −0.2394
(0.0079)

0.4541
(0.0019)

−0.3097
(0.0013)

0.6729

dd 4 0.1096
(0.0186)

0.1212
(0.0130)

0.4200
(0.0238)

0.7296

dis 4 0.1043
(0.0182)

0.1051
(0.0085)

0.4578
(0.0270)

0.7153

ge 5 0.0342
(0.0126)

−0.1732
(0.0075)

0.4208
(0.0274)

0.6906

gm 3 −0.0651
(0.0188)

−0.1381
(0.0118)

0.4344
(0.0262)

0.6602

hd 5 0.0796
(0.0207)

−0.1156
(0.0069)

0.4151
(0.0293)

0.6965

hon 5 0.0049
(0.0183)

−0.0786
(0.0090)

0.4321
(0.0270)

0.5992

hpq 3 0.1052
(0.0564)

0.1786
(0.0433)

0.4257
(0.0368)

0.7888

ibm 3 0.0377
(0.0146)

−0.0071
(0.0104)

0.4345
(0.0262)

0.7104

jnj 5 0.0021
(0.0114)

−0.0112
(0.0120)

0.4294
(0.0328)

0.7360

jpm 5 −0.1445
(0.0087)

−0.2381
(0.0022)

0.4723
(0.0091)

0.6840

ko 5 0.0584
(0.0111)

−0.0346
(0.0056)

0.4903
(0.0331)

0.7411

mcd 4 0.0869
(0.0204)

−0.0455
(0.0125)

0.4305
(0.0291)

0.6861

mmm 2 0.0631
(0.0145)

0.0806
(0.0119)

0.4050
(0.0220)

0.7118

mo 5 0.0917
(0.0138)

−0.0710
(0.0096)

0.4561
(0.0343)

0.5801

mrk 5 0.0064
(0.0066)

0.0440
(0.0022)

0.4234
(0.0340)

0.6314

pfe 5 −0.1015
(0.0140)

−0.3205
(0.0038)

0.4813
(0.0200)

0.6877

pg 4 0.0931
(0.0101)

−0.0300
(0.0033)

0.4554
(0.0273)

0.7022

t 4 0.0463
(0.0147)

0.0542
(0.0101)

0.4291
(0.0281)

0.6597

utx 4 0.1073
(0.0038)

−0.0101
(0.0014)

0.4724
(0.0250)

0.7194

vz 3 −0.0751
(0.0306)

−0.0795
(0.0339)

0.4345
(0.0282)

0.7544

wmt 5 −0.0019
(0.0123)

−0.0312
(0.0058)

0.4881
(0.0254)

0.7106

xom 2 0.1337
(0.0196)

−0.2062
(0.0215)

0.4040
(0.0263)

0.7383
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TABLE 3. LINEARITY TEST.

Results of the linearity test: p-value for different choices of transition variables.
Series past return past 5-day returns past 22-day returns time

aa 7.4614e− 011 7.7716e− 016 1.7386e− 013 5.7236e− 002
aig 4.4409e− 016 0 2.7756e− 014 8.9596e− 003
axp 2.0306e− 013 0 0 6.3512e− 006
ba 0 0 0 6.2752e− 007
c 1.6029e− 011 0 0 2.3226e− 007

cat 0 0 0 6.9072e− 002
dd 2.7756e− 015 0 2.2204e− 016 3.9567e− 007
dis 1.9916e− 011 2.5757e− 014 3.1040e− 012 7.2862e− 006
ge 0 0 0 7.8109e− 009
gm 7.2018e− 012 9.4036e− 014 1.3334e− 013 8.5783e− 001
hd 0 0 0 1.7102e− 005
hon 2.6860e− 011 0 0 6.5725e− 004
hpq 8.4052e− 009 1.3436e− 007 4.2223e− 006 5.8328e− 002
ibm 1.1102e− 016 0 5.0671e− 013 5.8471e− 007
jnj 0 0 2.6079e− 013 1.3064e− 005
jpm 1.1102e− 016 0 0 1.4548e− 006
ko 1.4166e− 013 0 5.5753e− 011 8.5256e− 005

mcd 1.3819e− 010 6.7724e− 014 4.9084e− 012 1.6919e− 002
mmm 3.7597e− 011 1.3460e− 010 5.5536e− 010 1.2813e− 005

mo 1.5848e− 007 3.4539e− 013 3.3347e− 006 1.9979e− 002
mrk 1.2318e− 009 0 3.2601e− 009 1.2510e− 001
pfe 2.0837e− 007 7.3617e− 009 7.5223e− 008 2.8729e− 002
pg 7.9030e− 010 0 1.4207e− 010 1.7706e− 003
t 3.3307e− 016 9.9920e− 016 1.6742e− 013 5.8954e− 007

utx 2.8315e− 010 3.4417e− 015 3.4149e− 012 4.3828e− 005
vz 2.3395e− 007 8.8299e− 010 8.4433e− 010 4.5696e− 005

wmt 3.2361e− 011 0 8.4714e− 011 4.1408e− 005
xom 2.4691e− 010 3.5527e− 015 5.5971e− 011 5.7165e− 003
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TABLE 4. NONLINEAR ESTIMATION RESULTS. TRANSITION VARIABLE: TIME.

Parameters estimates (standard errors in parentheses). The number
M of transitions is chosen by AIC.

Series β λ d M R2

aa −0.0635
(0.0316)

−0.1257
(0.0245)

0.4665
(0.0347)

2 0.7349

aig −0.0100
(0.0518)

−0.1345
(0.0368)

0.4246
(0.0462)

2 0.6903

axp −0.0450
(0.0179)

−0.2306
(0.0080)

0.4856
(0.0355)

2 0.6725

ba −0.0014
(0.0248)

−0.1373
(0.0177)

0.4029
(0.0387)

2 0.7058

c 0.0818
(0.0155)

0.0039
(0.0099)

0.4728
(0.0342)

1 0.6836

cat −0.2284
(0.0218)

0.4568
(0.0082)

−0.3071
(0.0024)

1 0.6705

dd 0.1105
(0.0232)

0.1219
(0.0250)

0.4044
(0.0285)

2 0.7371

dis 0.1062
(0.0263)

0.1064
(0.0268)

0.3960
(0.0360)

3 0.6992

ge 0.0348
(0.0336)

−0.1704
(0.1813)

0.4040
(0.0342)

2 0.6919

gm −0.0631
(0.0627)

−0.1349
(0.1419)

0.4109
(0.0642)

1 0.6590

hd 0.0815
(0.0675)

−0.1145
(0.0374)

0.4742
(0.0354)

1 0.7057

hon 0.0044
(0.0252)

−0.0776
(0.0098)

0.3772
(0.0350)

2 0.6070

hpq 0.1074
(0.0556)

0.1776
(0.0518)

0.1547
(0.0943)

1 0.8044

ibm 0.0374
(0.0205)

−0.0079
(0.0351)

0.4498
(0.3602)

2 0.7184

jnj 0.0028
(0.0260)

−0.0098
(0.0806)

0.4038
(0.0323)

1 0.7235

jpm −0.1491
(0.0808)

−0.2392
(0.0191)

0.4097
(0.0253)

1 0.6858

ko 0.0581
(0.0169)

−0.0342
(0.0071)

0.4220
(0.0263)

2 0.7483

mcd 0.0873
(0.0250)

−0.0452
(0.0180)

0.4401
(0.0301)

2 0.6813

mmm 0.0605
(0.0205)

0.0780
(0.0228)

0.4469
(0.0232)

1 0.7207

mo 0.0919
(0.0210)

−0.0714
(0.0212)

0.4785
(0.0349)

1 0.5585

mrk 0.0912
(0.0189)

0.0777
(0.0067)

−0.4046
(0.0195)

2 0.6022

pfe −0.1085
(0.0221)

−0.3231
(0.0060)

0.3950
(0.0363)

2 0.6910

pg 0.0934
(0.0177)

−0.0296
(0.0109)

0.4221
(0.0452)

1 0.7028

t 0.0462
(0.0244)

0.0542
(0.0259)

0.4341
(0.0300)

2 0.6713

utx 0.1032
(0.0167)

−0.0121
(0.0078)

0.3980
(0.0127)

4 0.7250

vz −0.0744
(0.0529)

−0.0764
(0.1452)

0.4058
(0.0243)

1 0.7743

wmt 0.0074
(0.1419)

−0.0214
(0.1496)

0.4206
(0.0435)

2 0.7189

xom 0.1359
(0.1000)

−0.2054
(0.0827)

0.4346
(0.0332)

1 0.7506
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TABLE 5. NONLINEAR ESTIMATION RESULTS. TRANSITION VARIABLE: PAST RE-
TURNS (LEVERAGE).

Parameters estimates (standard errors in parentheses). The number
M of transitions is chosen by AIC.

Series β λ d M R2

aa −0.0651
(0.0524)

−0.1260
(0.0281)

0.4346
(0.0453)

2 0.7615

aig −0.0084
(0.0204)

−0.1332
(0.0299)

0.4719
(0.0534)

3 0.6286

axp −0.0533
(0.1139)

−0.2302
(0.0110)

0.4056
(0.0364)

1 0.6663

ba −0.0008
(0.0436)

−0.1385
(0.0179)

0.4742
(0.0463)

2 0.7158

c 0.0819
(0.0222)

0.0040
(0.0205)

0.4650
(0.3632)

1 0.6714

cat −0.2394
(0.0362)

0.4542
(0.0111)

−0.3097
(0.0069)

1 0.6712

dd 0.1093
(0.0779)

0.1210
(0.0700)

0.4246
(0.0364)

1 0.7393

dis 0.1053
(0.0340)

0.1059
(0.0352)

0.4262
(0.2508)

2 0.7137

ge 0.0338
(0.0442)

−0.1753
(0.0520)

0.4346
(0.0464)

1 0.7314

gm −0.0687
(0.0622)

−0.1441
(0.0824)

0.4841
(0.0374)

2 0.6640

hd 0.0810
(0.0775)

−0.1148
(0.0434)

0.4598
(0.0453)

2 0.7285

hon 0.0053
(0.0298)

−0.0790
(0.0163)

0.4583
(0.2172)

1 0.6118

hpq 0.1019
(0.0720)

0.1768
(0.0573)

0.4631
(0.0365)

2 0.8053

ibm 0.0384
(0.0867)

−0.0054
(0.0304)

0.4058
(0.0464)

2 0.7105

jnj 0.0021
(0.0418)

−0.0112
(0.0588)

0.4299
(0.0453)

2 0.7439

jpm −0.1437
(0.0781)

−0.2379
(0.0226)

0.4829
(0.0325)

2 0.7017

ko 0.0581
(0.0169)

−0.0341
(0.0055)

0.4018
(0.0855)

2 0.7589

mcd 0.0883
(0.0598)

−0.0443
(0.0480)

0.4648
(0.0235)

2 0.6959

mmm 0.0601
(0.0771)

0.0776
(0.0624)

0.4529
(0.0354)

2 0.7246

mo 0.0918
(0.0213)

−0.0711
(0.0436)

0.4620
(0.0364)

2 0.4739

mrk 0.0113
(0.0202)

0.0467
(0.0102)

0.3968
(0.0405)

2 0.6346

pfe −0.1026
(0.0873)

−0.3209
(0.0315)

0.4688
(0.0865)

2 0.6864

pg 0.0929
(0.0182)

−0.0302
(0.0141)

0.4710
(0.0346)

3 0.6811

t 0.0463
(0.0340)

0.0542
(0.0612)

0.4279
(0.0342)

1 0.6873

utx 0.1078
(0.0901)

−0.0098
(0.0449)

0.4892
(0.0353)

2 0.7285

vz −0.0756
(0.0340)

−0.0827
(0.0616)

0.4687
(0.1630)

2 0.7593

wmt 0.0027
(0.1486)

−0.0263
(0.1522)

0.4529
(0.0342)

1 0.7185

xom 0.1347
(0.0281)

−0.2059
(0.0465)

0.4175
(0.0319)

1 0.7711
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TABLE 6. NONLINEAR ESTIMATION RESULTS. TRANSITION VARIABLE: AIC-
CHOSEN LINEAR COMBINATIONS OF LAGGED RETURNS.

Parameters estimates (standard errors in parentheses). The number
M of transitions is chosen by AIC.

Series β λ d M R2

aa −0.0651
(0.0316)

−0.1260
(0.0245)

0.4356
(0.0268)

6 0.7865

aig −0.0106
(0.0206)

−0.1350
(0.0099)

0.4050
(0.0280)

1 0.7149

axp −0.0475
(0.0174)

−0.2305
(0.0081)

0.4607
(0.0240)

3 0.7167

ba −0.0009
(0.0163)

−0.1384
(0.0116)

0.4657
(0.0234)

6 0.7484

c 0.0821
(0.0198)

0.0041
(0.0106)

0.4521
(0.0214)

7 0.7144

cat −0.2407
(0.0361)

0.4538
(0.0112)

−0.3100
(0.0068)

4 0.6655

dd 0.1056
(0.0247)

0.1176
(0.0257)

0.4889
(0.0255)

2 0.7418

dis 0.1033
(0.0258)

0.1043
(0.0265)

0.4868
(0.0273)

1 0.7323

ge 0.0331
(0.0201)

−0.1828
(0.0239)

0.4957
(0.0290)

2 0.7219

gm −0.0633
(0.0275)

−0.1351
(0.0291)

0.4123
(0.0365)

3 0.6957

hd 0.0797
(0.0275)

−0.1156
(0.0129)

0.4182
(0.0275)

3 0.7490

hon 0.0044
(0.0253)

−0.0777
(0.0096)

0.3830
(0.0259)

5 0.6267

hpq 0.1071
(0.0575)

0.1794
(0.0596)

0.4020
(0.0449)

2 0.7971

ibm 0.0373
(0.0224)

−0.0080
(0.0319)

0.4519
(0.0245)

2 0.6631

jnj 0.0017
(0.0163)

−0.0121
(0.0034)

0.4511
(0.0335)

3 0.7629

jpm −0.1472
(0.0166)

−0.2388
(0.0048)

0.4376
(0.0249)

2 0.6789

ko 0.0581
(0.0165)

−0.0341
(0.0031)

0.4115
(0.0295)

1 0.7569

mcd 0.0873
(0.0779)

−0.0452
(0.0587)

0.4415
(0.9295)

3 0.6930

mmm 0.0619
(0.0210)

0.0794
(0.0226)

0.4236
(0.0215)

2 0.7286

mo 0.0916
(0.0214)

−0.0697
(0.0214)

0.4151
(0.0295)

6 0.6237

mrk 0.0798
(0.0184)

0.0723
(0.0063)

−0.4230
(0.0187)

4 0.5957

pfe −0.1046
(0.0234)

−0.3217
(0.0063)

0.4455
(0.0330)

2 0.6933

pg 0.0934
(0.0191)

−0.0296
(0.0146)

0.4206
(0.0352)

1 0.7205

t 0.0462
(0.0239)

0.0542
(0.0269)

0.4299
(0.0260)

2 0.6733

utx 0.1055
(0.0166)

−0.0110
(0.0078)

0.4331
(0.0267)

3 0.7491

vz −0.0746
(0.0332)

−0.0774
(0.0518)

0.4144
(0.0321)

1 0.7878

wmt 0.0079
(0.0224)

−0.0210
(0.0165)

0.4176
(0.0288)

4 0.7224

xom 0.1372
(0.0799)

−0.2048
(0.0623)

0.4549
(0.0433)

2 0.7873
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TABLE 7. FORECASTING RESULTS.

Numbers in parenthesis are p-values of the Superior Predictive
Ability (SPA) test proposed by Hansen (2005).

Series linear leverage fully nonlinear HAR
aa 0.8193

(0.0835)
0.8217
(0.0705)

0.8339
(0.5885)

0.8182
(0.0450)

aig 0.4786
(0.1040)

0.4878
(0.1195)

0.5552
(0.5450)

0.4789
(0.1325)

axp 0.6476
(0.7330)

0.6480
(0.8190)

0.6217
(0.0060)

0.6439
(0.1345)

ba 0.8269
(0.8570)

0.5740
(0)

0.8267
(0.7355)

0.8249
(0.0685)

c 0.8435
(0.9190)

0.8221
(0.0305)

0.8242
(0.0030)

0.8399
(0.0120)

cat 0.7053
(0.8775)

0.7047
(0.4790)

0.6934
(0.0345)

0.7031
(0.4590)

dd 0.8133
(0.7545)

0.8128
(0.6030)

0.8139
(0.6515)

0.8129
(0.6965)

dis 0.7924
(0.0720)

0.7985
(0.6775)

0.7918
(0.0625)

0.7889
(0.0170)

ge 0.8244
(0.1245)

0.7757
(0)

0.8302
(0.7405)

0.8220
(0.0710)

gm 0.6130
(0.1965)

0.6172
(0.2055)

0.6889
(0.5680)

0.6184
(0.1730)

hd 0.7866
(0.5820)

0.7670
(0)

0.7908
(0.6860)

0.7842
(0.1375)

hon 0.5986
(0.8845)

0.5968
(0.5350)

0.5966
(0.5485)

0.5934
(0.0950)

hpq 0.7668
(0.3220)

0.7675
(0.1430)

0.7718
(0.7140)

0.7599
(0.0245)

ibm 0.8264
(0.4985)

0.8306
(0.6950)

0.8045
(0.0065)

0.8228
(0.0885)

jnj 0.6617
(0.1840)

0.6708
(0.7055)

0.6614
(0.1075)

0.6575
(0.0830)

jpm 0.7785
(0.7130)

0.7805
(0.6635)

0.7790
(0.5740)

0.7748
(0.0390)

ko 0.8092
(0.8405)

0.8004
(0.0200)

0.8032
(0.1550)

0.8065
(0.0420)

mcd 0.7264
(0.2580)

0.7302
(0.8695)

0.6713
(0)

0.7259
(0.1895)

mmm 0.7673
(0.3585)

0.7691
(0.2945)

0.7725
(0.6685)

0.7621
(0.0005)

mo 0.4155
(0.7575)

0.3698
(0.0140)

0.4233
(0.6775)

0.4151
(0.6370)

mrk 0.3162
(0.5620)

0.3144
(0.3610)

0.3057
(0.0245)

0.3177
(0.6765)

pfe 0.5800
(0.9235)

0.5756
(0.1650)

0.5776
(0.3745)

0.5801
(0.6650)

pg 0.7768
(0.7105)

0.7439
(0.0005)

0.7780
(0.7200)

0.7751
(0.4185)

t 0.7274
(0.2040)

0.7230
(0.1790)

0.7344
(0.7705)

0.7247
(0.0885)

utx 0.8032
(0.7145)

0.8045
(0.6645)

0.7954
(0.0500)

0.8007
(0.0830)

vz 0.7651
(0.9215)

0.7647
(0.6105)

0.7568
(0.1610)

0.7595
(0.0270)

wmt 0.8412
(0.8740)

0.8351
(0.0700)

0.8403
(0.5220)

0.8382
(0.0995)

xom 0.7951
(0.1370)

0.7973
(0.3605)

0.8033
(0.8055)

0.8006
(0.6210)
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FIGURE 1. Size discrepancy curves of the linearity test. The dots refer to vt−1 as
nonlinear variable, triangles refer to t as nonlinear variable, and squares refer to et−1

as nonlinear variable. Panel (a): λ = 0 and T = 1000. Panel (b): λ = 0 and T = 2000.
Panel (c): λ = 0.5 and T = 1000. Panel (d): λ = 0.5 and T = 2000.
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FIGURE 2. Nonlinear specifications with time as transition variable. The sum of the
transition functions (scaled up for clarity) is plotted as solid line. Panel (a): Procter and
Gamble, single hard transition from high to low volatility regime. Panel (b): Walmart,
two hard transitions from low to high and back to low volatility regime. Panel (c):
American International Group, one smooth and one hard transition from low to high
and back to low volatility. Panel (d): Walt Disney, two hard transitions from low to
high to higher, then one smooth transition to low volatility.
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FIGURE 3. Nonlinear specifications with returns at lag one as transition variable. The
sum of the transition functions is plotted as solid line in the bottom panels. Panel
(a): Johnson and Johnson, three volatility regimes according to large negative, small,
and large positive returns with two hard transitions. Panel (b): General Electric, two
regimes for negative and positive returns with one smooth transition. Panel (c): Coca-
Cola, one smooth and one hard transition. The smooth transition captures the leverage
effect: the lower the return, the higher the volatility. However, for very large positive
returns, volatility makes an upward jump. Panel (d): Procter and Gamble, three hard
transitions. Here the intermediate range of returns is split into two sub-regimes with
higher volatility for small negative returns than for small positive returns.



ASYMMETRIES, BREAKS, AND LONG-RANGE DEPENDENCE IN REALIZED VOLATILITY 29

APPENDIX A. REALIZED VOLATILITY

Suppose that at day t the logarithmic price p of a given asset at time t + τ follows a continuous time diffusion:

dp(t + τ) = µ(t + τ) + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, 3, . . . ,

where µ(t + τ) is the drift component, σ(t + τ) is the instantaneous volatility (or standard deviation), and W (t + τ) is
standard Brownian motion.

Andersen, Bollerslev, Diebold, and Labys (2001a), Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-
Nielsen and Shephard (2002), among others, consider daily compound returns rt = p(t) − p(t − 1) conditioned on Ft =

σ(p(s), s ≤ t), the σ-algebra (information set) generated by the sample paths of p. They defineZ 1

0

σ2(t− 1 + τ)dτ = Var(rt|F({µθ}θ≤t, {σθ}θ≤t)) + ηt, (11)

or integrated variance as the object of interest in realized volatility theory. The set F({µθ}θ≤t, {σθ}θ≤t) is the sigma-
algebra generated by the sample paths of the drift and diffusion processes µs and σs for s up to time t, but not by the
Brownian motion Wt that constitutes the randomness in the return equation. Thus rt conditioned on F({µθ}θ≤t, {σθ}θ≤t)

remains a random variable. The error ηt has zero mean. Integrated variance is a measure of the day-t ex post volatility.
Compare with equation (11a) in Andersen, Bollerslev, Diebold, and Labys (2001a).

In practical applications, prices are observed at discrete and irregularly spaced intervals and there are many ways to sample
the data. Suppose that at a given day t, we partition the interval [0,1] in subintervals and define the grid of observation times
G = {τ1, . . . , τn}, 0 = τ0 < τ1 < · · · , τn = 1. The length of the ith subinterval is given by δi = τi − τi−1. The most
widely used sampling scheme is calendar time sampling (CTS), where the intervals are equidistant in calendar time, that is
δi = 1/n. Set Si,t, t = 1, . . . , n, to be the ith price observation during day t, such that rt,i = pt,i − pt,i−1 is the ith
intra-period return of day t. Realized variance is defined as

RVt =

nX
i=1

r2
t,i. (12)

Realized volatility is the square-root of RVt.
Under additional regularity conditions including the assumption of uncorrelated intraday returns, realized variance is a

consistent estimator of integrated variance, such that RVt
p−→ IVt. When returns are correlated, however, realized volatility

will be a biased estimator of daily volatility. Serial correlation may be the result of market microstructure (Campbell, Lo, and
MacKinlay 1997, Chapter 3). In light of these results, our assumption 2 can be criticized as falling short of the true situation
where σt is replaced by a consistent estimator. The asymptotic theory for the fully general setup with realized volatility time
series σt + ηt would be substantially more complex.

The effects of microstructure and optimal sampling of intraday returns have been discussed in, for example, Bandi and
Russell (2005a, 2005b, 2006), Barndorff-Nielsen and Shephard (2002), Meddahi (2002), Oomen (2005), Zhang, Mykland,
and Aı̈t-Sahalia (2005), Hansen and Lunde (2006), among others. Consistent estimators of realized volatility for a single
day in the presence of microstructure noise are developed in Zhang, Mykland, and Aı̈t-Sahalia (2005), Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2007), and Hansen, Large, and Lunde (2007).

Several salient features of realized volatility have been identified in the literature: The unconditional distribution of daily
returns exhibits excess kurtosis. Daily returns are not autocorrelated (except for the first order in some cases). Daily returns
standardized by the realized variance measure are almost Gaussian. The unconditional distribution of realized variance and
volatility is distinctly non-normal and extremely right-skewed. On the other hand, the natural logarithm of volatility is close
to normality. The log of realized volatility displays a high degree of (positive) autocorrelation, which dies out very slowly.
Finally, realized volatility does not seem to have a unit root, but there is strong evidence of fractional integration; see McAleer
and Medeiros (2006) for a recent survey.
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APPENDIX B. TIME SERIES MODELS FOR REALIZED VOLATILITY AS DATA-GENERATING PROCESSES

The interpretation of time series models for realized volatility as data-generating processes may not appear straightforward.
In this paper, we advocate model (1), (2) as an estimation model that captures features that can be produced by stochastic
volatility diffusion models that generate the intraday returns. For example, long memory may be the result of stochastic
volatility that is driven by the sum of several Ornstein-Uhlenbeck processes of different decorrelation lengths (LeBaron 2001,
Fouque, Papanicolaou, and Sircar 2000). We do not advocate our model as data-generating process because the fractional
difference operator would imply convergence to fractional Brownian motion in the volatility equation in the continuous
time limit. We rather understand fractional integration as an abbreviation for aggregation over several Ornstein-Uhlenbeck
processes.

It is possible, however, to interpret model (1), (2) as data-generating process. The only complication involved is the correct
scaling of the parameters and of σt. Write the model as

rt+s = x′t+sβM + λMσt+s + h(M)σt+set+s,

σt+s = f ({σθ}θ<t+s; ξM ) , s ∈
�

0

M
,

1

M
, . . . ,

M

M

�
, t = 0, . . . , T − 1,

where a couple differences to the notation in (1), (2) have been introduced: M is the number of intraday observations, s

denotes the intraday time indicator and M as subscript indicates the dependence of parameters on the intraday time scale,
f is a general volatility function that depends on the history of σt, may contain stochastic elements and is parameterized by
ξM . The function h(M) is a deterministic scaling factor that depends on the number M of intraday observations and on the
scaling of σt. The numerical values of the parameters βM , λM , and so forth depend on the intraday scale as well.

EXAMPLE 6. Consider the following two cases:

(1) HAR-RV

f ({σθ}θ<t+s; ξM ) = c + α1σt−1+s +
α2

5

5X
j=1

σt−j+s +
α3

21

21X
j=1

σt−j+s + ut+s, ut ∼ WN(0, σ2
u).

Here, the parameters in ξM are (c, α1, α2, α3, σ
2
u) and can be chosen such that σt scales to any desired level of

magnitude, say annualized volatility with a realistic numerical magnitude of 10−1 for stock market data.
(2) Model (2)

f ({σθ}θ<t+s; ξM ) = exp
n

(1− L)−d [g(zt; ξ) + Θ(L)ut]
o

Again, the parameters can be chosen such that σt scales to any desired level, say annualized volatility.

In both examples we have assumed that the dimension of σt is annualized volatility. Then, the deterministic scaling
function h is

h(M) =
1√
250

1√
M

.

Similarly, if λ ∈ R is the annualized numerical parameter value for the volatility-in-mean parameter, then λM = λ/(250M)

in the example above. The web page of the first author provides an Excel spreadsheet file that illustrates intraday data
generation by the HAR-RV model.

APPENDIX C. THE GRADIENT

The gradient will be used subsequently; this subsection lists its elements.

∂`t

∂d
= −et

∂et

∂d
− ut

σ2
u

∂ut

∂d
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=
λet

σtT

∂

∂d
(1− L)d log σtT − ut

σ2
u

Θ−1(L)

�
∂

∂d
(1− L)d log σtT − ∂

∂d
g(ztT ; ξ)

�
,

∂`t

∂β
= −et

∂et

∂β
= et

xtT

σtT
,

∂`t

∂λ
= −et

∂et

∂λ
=

et

σtT
(1− L)d log σtT ,

∂`t

∂ξ
= − ut

σ2
u

∂ut

∂ξ
= − ut

σ2
u

Θ−1(L)
∂

∂ξ
g(ztT ; ξ),

∂`t

∂θi
= − ut

σ2
u

∂ut

∂θi
= − ut

σ2
u

∂Θ−1(L)

∂θi
((1− L)d log σtT − g(ztT ; ξ)),

∂`t

∂σ2
u

= − 1

2σ2
u

+
1

2

u2
t

σ4
u

,

where ∂
∂θi

Θ−1(L) = −ciL/(1 + θiL)2 and ci being the appropriate numerator constant from the partial fraction decompo-
sition of Θ−1(L).

APPENDIX D. PROOF OF CONSISTENCY

Proof of Theorem 1. Following Theorem 4.1.1 of Amemiya (1985), bψT

p→ ψ0 if the following conditions hold:

(1) Ψ is a compact parameter set.
(2) LT (ψ, εt) is continuous in ψ and measurable in εt.
(3) LT (ψ) converges to a deterministic function L(ψ) in probability uniformly on Ψ as T →∞.
(4) L(ψ) attains a unique global maximum at ψ0.

Item (1) is given by assumption. Item (2) holds by definition of the normal density and construction of εt. Item (3) holds
by the Ergodic Theorem if E sup |`t(ψ)| < ∞. The latter holds by the Jensen inequality and E sup |f(εt, ψ)| < ∞, where
f denotes the normal density function. The finiteness of the last expression follows from the definition of the normal density
as long as σ2

u > c > 0 for some constant c, which is a reasonable assumption.
Consider Item (4). By the Ergodic Theorem, L(ψ) = E`t(ψ). Rewrite the maximization problem as

max
ψ∈Ψ

E(`t(ψ)− `t(ψ0)).

Now,

E(`t(ψ)− `t(ψ0)) = E log

�
f(εt, ψ)

f(εt, ψ0)

�
,

= E

�
−1

2
log

σ2
u

σ2
u,0

− 1

2

�
e2

t − e2
t,0 +

u2
t

σ2
u

− u2
t,0

σ2
u,0

��
,

= −1

2
log

σ2
u

σ2
u,0

− 1

2

�
Ee2

t − 1 +E(u2
t σ
−2
u )− 1

�
.

Next, we show that Ee2
t (ψ) ≥ 1 and Eu2

t (ψ) ≥ Eu2
t,0 = σ2

u,0 and that the expressions attain their respective lower
bounds at ψ = ψ0 uniquely. Consider

Ee2
t (ψ) = E

�
σ−1

tT (rtT − β′xtT − λvtT )
�2

,

= E
�
σ−1

tT (β′0xtT + λ0vtT + σtT et,0 − β′xtT − λvtT )
�2

,

= E
�
σ−1

tT (β′0 − β′)xtT + σ−1
tT (λ0 − λ)vtT + et,0

�2
,

≥ Ee2
t,0 = 1.
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The latter inequality holds since all cross terms involving et,0 are zero in expectation. The cross term

E
�
2σ−1

tT (β′0 − β′)xtT (λ0 − λ)vtT

�
< Eσ−2

tT (β′0 − β′)xtT x′tT (β0 − β) +Eσ−2
tT (λ0 − λ)2v2

tT ,

and thus Ee2
t (ψ) takes its minimum of 1 at ψ = ψ0 uniquely.

Consider

Eu2
t (ψ) = E

h
Θ−1(L)

�
(1− L)d log σtT − g(zt; ξ)

�i2
,

= E
h
Θ−1(L)(1− L)d−d0g(ztT ; ξ0) + Θ−1(L)(1− L)d−d0Θ0(L)ut,0 −Θ−1(L)g(zt; ξ)

i2
,

≥ E
h
Θ−1(L)(1− L)d−d0Θ0(L)ut,0

i2
,

≥ Eu2
t,0 = σ2

u,0,

and again, Eu2
t (ψ) attains its minimum of σ2

u,0 uniquely at ψ = ψ0 under Assumption 3.
So far, we have established that for any given σ2

u, the objective function E(`t(ψ)− `t(ψ0)) attains its maximum of

−1

2

�
log

σ2
u

σ2
u,0

+
σ2

u,0

σ2
u

− 1

�
at β = β0, λ = λ0, d = d0, Θ = Θ0, ξ = ξ0. Finding the value of σ2

u that maximizes the expression is tantamount to finding
the minimum of f(x) = log x + 1/x at x = 1 and thus the optimal value is σ2

u = σ2
u,0. This shows that E(`t(ψ)− `t(ψ0))

is uniquely maximized at ψ = ψ0. ¤

APPENDIX E. PROOF OF ASYMPTOTIC NORMALITY

REMARK 1.

(1) In this section, terms will sometimes involve expectations of cross-products of the type E(XY ), where X and Y

are correlated random variables. Note that by the Cauchy-Schwarz inequality, we have

EXY ≤ �EX2� 1
2
�
EY 2� 1

2 ,

and thus in order to show that the cross-product has finite expectation, it suffices to show that both random variables
have finite second moments.

(2) By the same token, if both X and Y have finite second moments,

E(X + Y )2 ≤ EX2 +EY 2 + 2
�
EX2� 1

2
�
EY 2� 1

2 ,

≤ K(EX2 +EY 2),

for some K < ∞.

LEMMA 1. The sequence
�

∂`t
∂ψ

���
ψ0

,Ft

�
t=1,...,T

is a stationary martingale difference sequence.

Proof. In this proof, all derivatives are evaluated at ψ = ψ0. The nought-subscript is suppressed to reduce notational clutter.

E

�
∂`t

∂d

����Ft−1

�
= E

�
λet

σtT

∂

∂d
(1− L)d log σtT − ut

σ2
u

Θ−1(L)

�
∂

∂d
(1− L)d log σtT − ∂

∂d
g(ztT ; ξ)

�����Ft−1

�
= 0,

since et and ut have mean zero, ∂
∂d

(1 − L)d log σtT is uncorrelated with et and σtT , and both ∂
∂d

(1 − L)d log σtT and
∂
∂d

g(ztT ; ξ) do not contain ut.
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E

�
∂`t

∂β

����Ft−1

�
= E

�
et

xtT

σtT

����Ft−1

�
= 0,

since et has mean zero, xtT is predetermined, and σtT is independent of et.

E

�
∂`t

∂λ

����Ft−1

�
= E

�
et

σtT
(1− L)d log σtT

����Ft−1

�
= 0,

since et has mean zero and is independent of both, σtT and (1− L)d log σtT .

E

�
∂`t

∂ξ

����Ft−1

�
= E

�
− ut

σ2
u

Θ−1(L)
∂

∂ξ
g(ztT ; ξ)

����Ft−1

�
= 0,

since g(ztT ; ξ) is independent of ut.

E

�
∂`t

∂θi

����Ft−1

�
= E

�
− ut

σ2
u

∂Θ−1(L)

∂θi
((1− L)d log σtT − g(ztT ; ξ))

����Ft−1

�
= 0,

since ∂Θ−1(L)
∂θi

(1− L)d log σtT does not contain ut.

E

�
∂`t

∂σ2
u

����Ft−1

�
= E

�
− 1

2σ2
u

+
1

2

u2
t

σ4
u

����Ft−1

�
= 0,

since ut has mean zero and variance σ2
u. ¤

LEMMA 2.

(1)

sup
ψ∈Ψ

E

����∂`t

∂ψ

���� < ∞

(2)

sup
ψ∈Ψ

E

����∂`t

∂ψ

∂`t

∂ψ′

���� < ∞

Proof. In this proof, the expressions are evaluated at any ψ ∈ Ψ if not otherwise stated. The data-generating parameters will
be explicitly denoted by a 0-subscript. The processes rtT , σtT , and log σtT are returns, realized volatility, and logarithmic
realized volatility data and thus evaluated at ψ0 throughout.

We will consider the gradient vector element by element:

sup
ψ∈Ψ

E

����∂`t

∂d

���� =
sup
ψ∈Ψ

E

���� λet

σtT

∂

∂d
(1− L)d log σtT − ut

σ2
u

Θ−1(L)

�
∂

∂d
(1− L)d log σtT − ∂

∂d
g(ztT ; ξ)

�����
Using the triangular and Cauchy-Schwarz inequalities, we need to find upper bounds for the following objects.

(1)

sup
ψ∈Ψ

E

���� et

σtT

����p ,

(2)

sup
ψ∈Ψ

E

���� ∂

∂d
(1− L)d log σtT

����p ,

(3)
sup
ψ∈Ψ

E |ut(ψ)|p ,

(4)

sup
ψ∈Ψ

E

����ut(ψ)
∂

∂d
g(ztT ; ξ)

����p ,
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where p = 1, 2.
Re (1). Consider

E

���� et

σtT

����p = E

���� 1

σ2
tT

(rtT − β′xtT − λ(1− L)−d log σtT )

����p ,

= E
���e−2[(1−L)−d0g(ztT ;ξ)+(1−L)−d0Θ0(L)ut,0]×�

(β0 − β)′xtT +
�
λ0(1− L)−d0 − λ(1− L)−d

�
log σtT + σtT et,0

� ����p ,

≤ K

��
E
��σ−2

tT

��q� 1
q �
E
��(β0 − β)′xtT

��q� 1
q

+
�
E
��σ−2

tT

��q� 1
q
�
E

����λ0(1− L)−d0 − λ(1− L)−d
�

log σtT

���q� 1
q

+
�
E
��σ−1

tT

��q� 1
q

(E |et,0|q)
1
q

�
,

where the latter inequality is obtained using the triangular and Hölder inequalities, and K < ∞. The exponent q = 2p,
p = 1, 2 in the Hölder inequality is chosen identical for all terms for notational convenience; the more general statement of
the inequality is not necessary for our purposes. Consider first

E
��σ−2

tT

��q = E
���e−2[(1−L)−d0g(ztT ;ξ0)+(1−L)−d0Θ0(L)ut,0]

���q
= Ee−2q(1−L)−d0g(ztT ;ξ0)

Ee−2q(1−L)−d0Θ0(L)ut,0 ,

by Assumptions 5 (3) and (5) and 3 (2) and (4).
Consider next

E

���(1− L)d log σtT

���q = E
���(1− L)d[(1− L)−d0g(ztT ; ξ0) + (1− L)−d0Θ0(L)ut,0]

���q ,

< K(E
���(1− L)d−d0g(ztT ; ξ0)

���q +E
���(1− L)d−d0Θ0(L)ut,0

���q) < ∞,

for some K < ∞ by Assumptions 5 (4), 3 (3), and 4.
Re (2),

E

���� ∂

∂d
(1− L)d log σtT

����q
= E

����� ∞X
j=0

(−1)j

j!

 
j−1X
i=0

1

d− i

!
j−1Y
i=0

(d− i)Lj log σtT

�����q ,

= E

����� ∞X
j=0

(−1)j

j!

 
j−1X
i=0

1

d− i

!
j−1Y
i=0

(d− i)Lj [(1− L)−d0g(ztT ; ξ0) + (1− L)−d0Θ0(L)ut,0]

�����q < ∞,

from the same set of assumptions as the last element of the gradient, recognizing that the derivative ∂
∂d

(1 − L)d retains the
stationarity of (1− L)d if d ∈ (−1/2, 1/2).

Re (3),

E |ut(ψ)|p = E
���Θ−1(L)

h
(1− L)d log σtT − g(ztT ; ξ)

i���p ,

≤ K(E
���Θ−1(L)(1− L)d log σtT

���p +E
��Θ−1(L)g(ztT ; ξ)

��p) < ∞.

The first term was shown to be finite above, recognizing that only parameters ψ are considered such that Θ(L) remains in
the invertible region. Then, the second term is also finite by Assumption 5 (4).
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Re (4),

E

����ut(ψ)
∂

∂d
g(ztT ; ξ)

����q
= (E |ut(ψ)|q) 1

q

�
E

���� ∂

∂d
g(ztT ; ξ)

����q� 1
q

< ∞.

The first term is shown to be finite above. The second term is finite by Assumption 5 (6).

The next element in the gradient vector is

E

����∂`t

∂β

���� = E ����xtT
et

σtT

���� ,
≤ (E |xtT |p)

1
p

�
E

���� et

σtT

����p� 1
p

< ∞.

The finiteness of the second factor was shown above. The first factor is assumed to be finite in Assumption 4 (2).

All other elements of the gradient vector are bounded by the same arguments and assumptions:

E

����∂`t

∂λ

���� = E ���� et

σtT
(1− L)d log σtT

���� ,
≤
�
E

���� et

σtT

����p� 1
p �
E

���(1− L)d log σtT

���p� 1
p

< ∞.

E

����∂`t

∂ξ

���� = E ���� ut

σ2
u

Θ−1(L)
∂

∂ξ
g(ztT ; ξ)

����
≤
�
E

���� ut

σ2
u

����p� 1
p
�
E

����Θ−1(L)
∂

∂ξ
g(ztT ; ξ)

����p� 1
p

< ∞.

E

����∂`t

∂θi

���� = E ���� ut

σ2
u

∂ut

∂θi

���� ,
= E

���� ut

σ2
u

∂Θ−1(L)

∂θi
[(1− L)d log σtT − g(ztT ; ξ)]

���� ,
= E

���� ut

σ2
u

�
− ciL

(1 + θiL)2

�
[(1− L)d log σtT − g(ztT ; ξ)]

���� ,
≤
�
E

���� ut

σ2
u

����p� 1
p
�
E

���� ciL

(1 + θiL)2
[(1− L)d log σtT − g(ztT ; ξ)]

����p� 1
p

< ∞.

E

���� ∂`t

∂σ2
u

���� = E ���� 1

2σ2
u

+
1

2

u2
t

σ4
u

���� ,
≤ 1

2σ2
u

+
1

2
E

����u2
t

σ4
u

���� < ∞.

This shows statement (1) of Lemma 2. Statement (2) of Lemma 2 uses the same arguments with the only difference that
for part (1), the exponents in the Hölder inequalities are at most equal to two, whereas for statement (2), we need q = 4. We
omit the details of (2) for the sake of brevity; they can be obtained from the authors. ¤

LEMMA 3. The function

gt(ψ) := − ∂2`t

∂ψ∂ψ′ −A(ψ)
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where

A(ψ) = −E ∂2`t

∂ψ∂ψ′

is absolutely uniformly integrable:
E sup

ψ∈Ψ
|gt(ψ)| < ∞;

it is continuous in ψ and has zero mean: Egt(ψ) = 0.

Proof. By the Ergodic Theorem, we have pointwise convergence of −1/T
PT

t=1 ∂2`t/∂ψ∂ψ′ to A. By the triangular
inequality, showing the absolute uniform integrability reduces to showing that

E sup
ψ∈Ψ

���� ∂2`t

∂ψ∂ψ′

���� < ∞.

We will show the statement for the second derivative of `t with respect to d, which requires most work and assumptions.
There are 21 distinct second derivatives in A; proving finiteness of the expected value of the supremum consists of repeated
application of the Lebesgue Dominated Convergence Theorem (Shiryaev (1996, p. 187), Ling and McAleer (2003), Lemmata
5.3 and 5.4).

First, note that

∂2

∂d2
(1− L)d =

∞X
j=0

(−1)j

j!

24 j−1X
i=0

1

d− i

!2

−
j−1X
i=0

�
1

d− i

�2
35 j−1Y

i=0

(d− i)Lj , (13)

=

∞X
j=0

(−1)j

j!

2664 j−1X
i,k=0
i6=k

1

(d− i)(d− k)

3775 j−1Y
i=0

(d− i)Lj .

Then we have

∂2`t

∂d2
= − λ2

σtT

�
∂

∂d
(1− L)d log σtT

�2

+
λet

σtT

∂2

∂d2
(1− L)d log σtT

− 1

σ2
u

Θ−2(L)

�
∂

∂d
(1− L)d log σtT − ∂

∂d
g(ztT ; ξ)

�2

− ut

σ2
u

Θ−1(L)

�
∂2

∂d2
(1− L)d log σtT − ∂2

∂d2
g(ztT ; ξ)

�
= R1 + R2 + R3 + R4.

We proceed to show that E sup |Ri| < ∞ for i = 1, . . . , 4.

|R1| =
�����λe−2[(1−L)−d0g(ztT ;ξ)+(1−L)−d0Θ0(L)ut,0]

�
∂

∂d

�
(1− L)−d0g(ztT ; ξ) + (1− L)−d0Θ0(L)ut,0

��2�����
≤ K

����� λ2

σ2
tT

�
∂

∂d
(1− L)d(1− L)−d0g(ztT ; ξ)

�2
�����+ K

����� λ2

σ2
tT

�
∂

∂d
(1− L)d(1− L)−d0Θ0(L)ut,0

�2
����� ,

for K < ∞. The expected value of the terms on the right-hand side is finite, as shown in the proof of Lemma 2. Therefore,
the supremum of the left-hand side is dominated by the right-hand side and E sup |R1| < ∞ by the Lebesgue Dominated
Convergence Theorem.

|R2| = λet

σ2
tT

�
∂2

∂d2
(1− L)d(1− L)−d0g(ztT ; ξ) +

∂2

∂d2
(1− L)d(1− L)−d0Θ0(L)ut,0

�
,

≤
���� λet

σ2
tT

∂2

∂d2
(1− L)d(1− L)−d0g(ztT ; ξ)

����+ ���� λet

σ2
tT

∂2

∂d2
(1− L)d(1− L)−d0Θ0(L)ut,0

���� .
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The finiteness of the expected value of the terms on the right-hand side follows similar arguments as in the proof of Lemma
2, using representation (13). So again, the supremum of the left-hand side has finite expectation by the Lebesgue Dominated
Convergence Theorem. The boundedness of R3 and R4 follow in the same fashion:

|R3| =
����� 1

σ2
u

Θ−2(L)

�
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∂d
log σtT − ∂
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���� .
We use arguments from the proof of Lemma 2 and Assumption 5 (7) for the last term. Thus,

E sup
ψ∈Ψ

|gt(ψ)| < ∞.

Further, gt(ψ) is continuous in ψ by the Continuous Mapping Theorem and has zero mean by construction. ¤

Proof of Theorem 2. The proof follows Theorem 4.1.3 of Amemiya (1985). First, we have to establish that bψT is consistent
(Thm. 1). Then,

B(ψ0)
− 1

2
1√
T

[rT ]X
t=1

∂`t

∂ψ

������
ψ0

d→ W (r), r ∈ [0, 1],

where W (r) is (kx +kξ +q +4)-dimensional standard Brownian motion on the unit interval. This convergence follows from

Theorem 18.3 in Billingsley (1999) if (a)
�

∂`t
∂ψ

���
ψ0

,Ft

�
is a stationary martingale difference sequence (Lemma 1), and (b)

B(ψ0) exists (Lemma 2). Further, we have to show that

AT (ψ∗
T )

p→ A(ψ0)

for any sequence ψ∗
T

p→ ψ0,

AT (ψ∗
T ) = − 1

T

TX
t=1

∂2`t

∂ψ∂ψ′

�����
ψ∗

T

,

and

A(ψ0) = −E ∂2`t

∂ψ∂ψ′

����
ψ0

is non-singular. Conditions for this double stochastic convergence can be found, for example, in Theorem 21.6 of Davidson
(1994). We need to have (a) consistency of bψT for ψ0 and (b) uniform convergence of AT to A in probability, i.e.

sup
ψ∈Ψ

|AT (ψ)−A(ψ)| p→ 0.

To show uniform convergence, often a stochastic version of the Arzelà-Ascoli theorem (e.g. Theorem 21.9 in Davidson
(1994)) is employed, which in a simple version shows the equivalence of uniform convergence and equicontinuity. By
proving stochastic equicontinuity, for example by checking the conditions of Theorem 2 of Andrews (1992), which involves
showing the finiteness of the third derivatives of the likelihood function, uniform convergence is established. In this proof,
we follow Berkes, Horváth, and Kokoszka (2003) and Ling and McAleer (2003, Theorem 3.1) in particular, who employ
the Ergodic Theorem to obtain uniform convergence directly by modifying Theorem 4.2.1 of Amemiya (1985). To employ
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Theorem 3.1 of Ling and McAleer (2003), we have to show that

gt(ψ) = − ∂2`t

∂ψ∂ψ′ −A(ψ)

is continuous in ψ, has expected value Egt(ψ) = 0 and is absolutely uniformly integrable:

E sup
ψ∈Ψ

|gt(ψ)| < ∞

(Lemma 3). Thus, we have established all conditions for asymptotic normality according to Theorem 4.1.3 of Amemiya
(1985). ¤

Proof of Proposition 1. We established uniform convergence in probability of AT to A in Lemma 3 and Theorem 2. It
remains to show uniform convergence of BT to B. We follow Theorem 3.1 of Ling and McAleer (2003) again. Define

ht(ψ) :=
∂`t

∂ψ

∂`t

∂ψ′ −B(ψ).

As we did for A in Lemma 3, we have to show that ht is absolutely uniformly integrable, continuous in ψ, and has expected
value Eht(ψ) = 0. By the triangular inequality, showing absolute uniform integrability reduces to showing that

E sup
ψ∈Ψ

∂`t

∂ψ

∂`t

∂ψ′ < ∞.

This can be shown using Lebesgue dominated convergence arguments very similar to those employed in the proof of Lemma
3. We omit the details for brevity. The function ht is continuous in ψ by the Continuous Mapping Theorem and has zero-mean
by construction. ¤
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MÜLLER, U. A., M. M. DACOROGNA, R. D. DAVE, R. B. OLSEN, O. V. PICTET, AND J. E. VON WEIZSÄCKER (1997):
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TERÄSVIRTA, T., C. F. LIN, AND C. W. J. GRANGER (1993): “Power of the Neural Network Linearity Test,” Journal of
Time Series Analysis, 14, 309–323.

VAN DIJK, D., P. FRANSES, AND R. PAAP (2002): “A Nonlinear Long Memory Model, With an Application to US Unem-
ployment,” Journal of Econometrics, 110, 135–165.
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